893 resultados para Anodised Coating
Resumo:
本文发展一种新的分析涂层结构(平板、梁)热残余应力的模型,可以研究骤冷过程(Quenching)和冷却过程(Cooling)在涂层结构内引发的残余应力分布。与以往模型相比,其优势在于:它可以考虑源于喷涂过程的涂层孔隙率、温度梯度等因素对于涂层和基底内残余应力的影响。其中孔隙率和温度分布由计算机模拟涂层沉积过程得到。另外,当基底的材料和几何参数被固定时,我们分析了诸如涂层的理想模量、厚度、热膨胀系数等参数,对于涂层结构中最终残余应力分布的改变机理。
Resumo:
涂层的断裂韧性与界面结合强度是表征涂层/基体材料体系力学性能的重要指标.但如何准确地测量涂层的断裂韧性和强界面结合的涂层/基体材料体系的界面结合强度至今仍存在困难.以铬涂层/钢基体材料为对象,采用声发射和显微镜实时动态检测技术与拉伸实验相结合的方法,探索了铬涂层的断裂韧性以及铬涂层/钢基体的界面剪切强度.根据相关力学模型和实验测量结果,得到铬涂层在室温下的断裂韧性为27.41J/m~2. 同时,发现在铬涂层裂纹饱和后界面开裂都未发生,获得了该种材料体系界面剪切强度的一个下限值.
Resumo:
针对激光辐照热障涂层材料的平面应变问题,提出热障涂层热弹性分析的基本方程,对定常温度场给出级数形式解析解,并用最小余能原理和变分法分析了结构的热弹性应力场,研究了最大应力和界面应力的分布特征,并就一些物理参数的影响进行了讨论.结果表明,热障涂层的主要破坏因素为表面拉伸应力,界面应力相对较小,但在自由边界有集中现象,剥落应力大于剪切应力,是导致涂层破坏的重要原因.涂层厚度增加会改变厚度方向上的应力分布,界面应力向中心集中.
Resumo:
本文用高能激光束熔覆MoSi_2粉末在45钢基体上制备了耐高温结构用涂层,用XRD、SEM、EDAX和显微硬度仪分别对熔覆层的组织结构和硬度进行了研究。试验结果表明,由于基体的稀释作用,涂层的相组成为FeMoSi、Fe_2Si和少量的Mo_5Si_3。涂层组织呈现典型的细小枝晶组织特征,枝晶为FeMoSi领先相,枝晶间为FeMoSi和Fe_2Si两相共晶,组织中无孔隙和裂纹等缺陷存在。Mo,Si,Fe线扫描成分布在涂层-基体界面处均缓慢过渡,基体与涂层发生互扩散,为冶金结合。涂层硬度可达HV_(0.5)845,基体硬度为180,涂层硬度比基体提高3.7倍。
Resumo:
利用漫反射率、X射线光电能谱和质谱等测量方法,研究了固态和气态四氧化二氮(N2O4)对漫反射试片氟化镁(MgF2)涂层表面的污染情况.实验表明,固态N2O4对MgF2涂层有严重侵蚀作用,N2O4固粒污染后的涂层表面漫反射率下降了20%~30%.在一定的时间内,气态N2O4对涂层表面的影响显著地依赖它的压力.试片在压力为6.9×104 Pa和200Pa的N2O4蒸气中分别放置10 min,前者厚度为40μm的MgF2涂层基本消失,表面漫反射率下降约20%;后者涂层表面的原子组成和漫反射率变化很小.还给出了MgF2涂层表面N2O4分子吸附摩尔密度,以及与涂层表面碰撞的N2O4分子通过化学吸附过程提取MgF2的几率.
Resumo:
Silent and stable long laminar plasma jets can be generated in a rather wide range of working parameters. The laminar flow state can be maintained even if considerable parameter fluctuations exist in the laminar plasma jet or if there is an impact of laterally injected particulate matter and its carrier gas. The attractive special features of laminar plasma jets include extremely low noise level, less entrainment of ambient air, much longer and adjustable high-temperature region length, and smaller axial gradient of plasma parameters. Modeling results show that the laminar plasma jet length increases with increasing jet inlet velocity or temperature and the effect of natural convection on laminar plasma jet characteristics can be ignored, consistent with experimental observations. The large difference between laminar and turbulent plasma jet characteristics is revealed to be due to their different laws of surrounding gas entrainment. Besides the promising applications of the laminar plasma jet to remelting and cladding strengthening of the metallic surface and to thermal barrier coating preparation, it is expected that the laminar plasma jet can become a rather ideal object for the basic studies of thermal plasma science owing to the nonexistence of the complexity caused by turbulence.
Resumo:
Background: The ability to recreate an optimal cellular microenvironment is critical to understand neuronal behavior and functionality in vitro. An organized neural extracellular matrix (nECM) promotes neural cell adhesion, proliferation and differentiation. Here, we expanded previous observations on the ability of nECM to support in vitro neuronal differentiation, with the following goals: (i) to recreate complex neuronal networks of embryonic rat hippocampal cells, and (ii) to achieve improved levels of dopaminergic differentiation of subventricular zone (SVZ) neural progenitor cells. Methods: Hippocampal cells from E18 rat embryos were seeded on PLL- and nECM-coated substrates. Neurosphere cultures were prepared from the SVZ of P4-P7 rat pups, and differentiation of neurospheres assayed on PLL- and nECM-coated substrates. Results: When seeded on nECM-coated substrates, both hippocampal cells and SVZ progenitor cells showed neural expression patterns that were similar to their poly-L-lysine-seeded counterparts. However, nECM-based cultures of both hippocampal neurons and SVZ progenitor cells could be maintained for longer times as compared to poly-L-lysine-based cultures. As a result, nECM-based cultures gave rise to a more branched neurite arborization of hippocampal neurons. Interestingly, the prolonged differentiation time of SVZ progenitor cells in nECM allowed us to obtain a purer population of dopaminergic neurons. Conclusions: We conclude that nECM-based coating is an efficient substrate to culture neural cells at different stages of differentiation. In addition, neural ECM-coated substrates increased neuronal survival and neuronal differentiation efficiency as compared to cationic polymers such as poly-L-lysine.
Resumo:
在电弧离子镀技术中使用脉冲偏压电源是近年来发展起来的一项新技术。研究表明,在薄膜沉积过程中,以直流偏压为基础,迭加一个高脉冲电压,有助于改善薄膜的性能,并且能够在较低的沉积温度下获得结合力较强、内应力较小、表面光洁度也比较好的薄膜。通过正交设计和方差分析,本文首次研究了在电弧离子镀技术中使用脉冲偏压电源, 在高速钢和不锈钢基体上沉积TiN和CrN的过程中,对薄膜的表面粗糙度、表面形貌、结合力、显微硬度、沉积速率等性能的影响,发现:(1) 在考虑气氛、弧电流和脉冲电源的各种参数的情况下,气氛和频率是影响薄膜性能的主要因素;(2)在气氛、弧电流不变的条件下,脉冲电源的频率和占空比是影响薄膜粗糙度的主要因素;(3)在比较了直流偏压和脉冲偏压的实验结果之后,认为利用直流迭加脉冲的偏压方式,经过优化参数,能够比较显著地 降低薄膜的表面粗糙度,提高沉积速率。
Resumo:
A study of fishing crafts was conducted in some coastal states of Nigeria to elucidate findings on the existing crafts as the baseline for further developments. Based on the technical designs, three types of fishing crafts were identified; planked, dug-out and half dug-out canoes. The planked canoes have the largest cubic number and dug-out canoes the least. At loadwater line, the ratio of freeboard to draft was 2 : 1 for planked canoes, indicating reserved buoyancy. Trim of planked canoe is by stern; the beam-length ratio for dug-out canoes showed high drag. Most of the sea-going canoes have U-shaped bottom hull profile capable of withstanding the rigours of surf landing and displayed good stability against longitudinal water wave. Gunwale and thwarts provided respectively the longitudinal and transverse strength of planked and half dug-out canoes. With its characteristics 'weight low down' construction, planked canoe represent the climax of small scale fishing crafts developments in Nigerian coastal waters. It's only draw back is durability. Further improvement in this canoe should be aimed at increasing the hull size and stiffness, water tightness of deck by coating, caulking, fastening, increasing level of motorization and installation of deck working equipments. Experimental design and use of fibre glass, aluminium and ferrocement hulls, together with improved planked canoe is highly advocated
Resumo:
A process of laser cladding Ni-CF-C-CaF2 mixed powders to form a multifunctional composite coatingd on gamma-TiAl substrate was carried out. The microstructure of the coating was examined using XRD, SEM and EDS. The coating has a unique microstructure consisting of primary dendrite or short-stick TiC and block Al4C3 carbides reinforcement as well as fine isolated spherical CaF2 solid lubrication particles uniformly dispersed in the NiCrAlTi (gamma) matrix. The average microhardness of the composite coatings is approximately HV 650 and it is 2-factor greater than that of the TiAl substrate. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The effects of constitution of precursor mixed powders and scan speed on microstructure and wear properties were designed and investigated during laser clad gamma/Cr7C3/TiC composite coatings on gamma-TiAl intermetallic alloy substrates with NiCr-Cr3C2 precursor mixed powders. The results indicate that both the constitution of the precursor mixed powders and the beam scan rate have remarkable influence on microstructure and attendant hardness as well as wear resistance of the formed composite coatings. The wear mechanisms of the original TiAl alloy and laser clad composite coatings were investigated. The composite coating with an optimum compromise between constitution of NiCr-Cr3C2 precursor mixed powders as well as being processed under moderate scan speed exhibits the best wear resistance under dry sliding wear test conditions. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This study focuses on mechanism of ceramic coating on Al-Si alloys with bulk primary Si using plasma electrolytic oxidation (PEO) technology. Al-Si alloys with 27-32% Si in weight were used as substrates. The morphologies, composition and microstructure of PEO coatings were investigated by scanning electron microscopy (SEM) with energy dispersive X-ray system (EDX). Results showed that the PEO process had four different stages. The effect of bulk Si is greatly on the morphology and composition of coatings at first three stages. Anodic oxide films formed on Al and Si phases, respectively. When the voltage exceeded 40 V, glow appeared and concentrated on the localized zone of interface of Al and Si phase. Al-Si-O compounds formed and covered on the dendrite Si phase surface, and the coating on bulk Si, which was silicon oxide, was rougher than that on other phase. If the treatment time was long enough, the coatings with uniform surface morphologies and elements distribution will be obtained but the microstructure of inner layer is looser due to the bulk Si.
Resumo:
The theories of relativity and quantum mechanics, the two most important physics discoveries of the 20th century, not only revolutionized our understanding of the nature of space-time and the way matter exists and interacts, but also became the building blocks of what we currently know as modern physics. My thesis studies both subjects in great depths --- this intersection takes place in gravitational-wave physics.
Gravitational waves are "ripples of space-time", long predicted by general relativity. Although indirect evidence of gravitational waves has been discovered from observations of binary pulsars, direct detection of these waves is still actively being pursued. An international array of laser interferometer gravitational-wave detectors has been constructed in the past decade, and a first generation of these detectors has taken several years of data without a discovery. At this moment, these detectors are being upgraded into second-generation configurations, which will have ten times better sensitivity. Kilogram-scale test masses of these detectors, highly isolated from the environment, are probed continuously by photons. The sensitivity of such a quantum measurement can often be limited by the Heisenberg Uncertainty Principle, and during such a measurement, the test masses can be viewed as evolving through a sequence of nearly pure quantum states.
The first part of this thesis (Chapter 2) concerns how to minimize the adverse effect of thermal fluctuations on the sensitivity of advanced gravitational detectors, thereby making them closer to being quantum-limited. My colleagues and I present a detailed analysis of coating thermal noise in advanced gravitational-wave detectors, which is the dominant noise source of Advanced LIGO in the middle of the detection frequency band. We identified the two elastic loss angles, clarified the different components of the coating Brownian noise, and obtained their cross spectral densities.
The second part of this thesis (Chapters 3-7) concerns formulating experimental concepts and analyzing experimental results that demonstrate the quantum mechanical behavior of macroscopic objects - as well as developing theoretical tools for analyzing quantum measurement processes. In Chapter 3, we study the open quantum dynamics of optomechanical experiments in which a single photon strongly influences the quantum state of a mechanical object. We also explain how to engineer the mechanical oscillator's quantum state by modifying the single photon's wave function.
In Chapters 4-5, we build theoretical tools for analyzing the so-called "non-Markovian" quantum measurement processes. Chapter 4 establishes a mathematical formalism that describes the evolution of a quantum system (the plant), which is coupled to a non-Markovian bath (i.e., one with a memory) while at the same time being under continuous quantum measurement (by the probe field). This aims at providing a general framework for analyzing a large class of non-Markovian measurement processes. Chapter 5 develops a way of characterizing the non-Markovianity of a bath (i.e.,whether and to what extent the bath remembers information about the plant) by perturbing the plant and watching for changes in the its subsequent evolution. Chapter 6 re-analyzes a recent measurement of a mechanical oscillator's zero-point fluctuations, revealing nontrivial correlation between the measurement device's sensing noise and the quantum rack-action noise.
Chapter 7 describes a model in which gravity is classical and matter motions are quantized, elaborating how the quantum motions of matter are affected by the fact that gravity is classical. It offers an experimentally plausible way to test this model (hence the nature of gravity) by measuring the center-of-mass motion of a macroscopic object.
The most promising gravitational waves for direct detection are those emitted from highly energetic astrophysical processes, sometimes involving black holes - a type of object predicted by general relativity whose properties depend highly on the strong-field regime of the theory. Although black holes have been inferred to exist at centers of galaxies and in certain so-called X-ray binary objects, detecting gravitational waves emitted by systems containing black holes will offer a much more direct way of observing black holes, providing unprecedented details of space-time geometry in the black-holes' strong-field region.
The third part of this thesis (Chapters 8-11) studies black-hole physics in connection with gravitational-wave detection.
Chapter 8 applies black hole perturbation theory to model the dynamics of a light compact object orbiting around a massive central Schwarzschild black hole. In this chapter, we present a Hamiltonian formalism in which the low-mass object and the metric perturbations of the background spacetime are jointly evolved. Chapter 9 uses WKB techniques to analyze oscillation modes (quasi-normal modes or QNMs) of spinning black holes. We obtain analytical approximations to the spectrum of the weakly-damped QNMs, with relative error O(1/L^2), and connect these frequencies to geometrical features of spherical photon orbits in Kerr spacetime. Chapter 11 focuses mainly on near-extremal Kerr black holes, we discuss a bifurcation in their QNM spectra for certain ranges of (l,m) (the angular quantum numbers) as a/M → 1. With tools prepared in Chapter 9 and 10, in Chapter 11 we obtain an analytical approximate for the scalar Green function in Kerr spacetime.
Resumo:
Thermal noise arising from mechanical loss in high reflective dielectric coatings is a significant source of noise in precision optical measurements. In particular, Advanced LIGO, a large scale interferometer aiming to observed gravitational wave, is expected to be limited by coating thermal noise in the most sensitive region around 30–300 Hz. Various theoretical calculations for predicting coating Brownian noise have been proposed. However, due to the relatively limited knowledge of the coating material properties, an accurate approximation of the noise cannot be achieved. A testbed that can directly observed coating thermal noise close to Advanced LIGO band will serve as an indispensable tool to verify the calculations, study material properties of the coating, and estimate the detector’s performance.
This dissertation reports a setup that has sensitivity to observe wide band (10Hz to 1kHz) thermal noise from fused silica/tantala coating at room temperature from fixed-spacer Fabry–Perot cavities. Important fundamental noises and technical noises associated with the setup are discussed. The coating loss obtained from the measurement agrees with results reported in the literature. The setup serves as a testbed to study thermal noise in high reflective mirrors from different materials. One example is a heterostructure of AlxGa1−xAs (AlGaAs). An optimized design to minimize thermo–optic noise in the coating is proposed and discussed in this work.
Resumo:
Fundamental studies of magnetic alignment of highly anisotropic mesostructures can enable the clean-room-free fabrication of flexible, array-based solar and electronic devices, in which preferential orientation of nano- or microwire-type objects is desired. In this study, ensembles of 100 micron long Si microwires with ferromagnetic Ni and Co coatings are oriented vertically in the presence of magnetic fields. The degree of vertical alignment and threshold field strength depend on geometric factors, such as microwire length and ferromagnetic coating thickness, as well as interfacial interactions, which are modulated by varying solvent and substrate surface chemistry. Microwire ensembles with vertical alignment over 97% within 10 degrees of normal, as measured by X-ray diffraction, are achieved over square cm scale areas and set into flexible polymer films. A force balance model has been developed as a predictive tool for magnetic alignment, incorporating magnetic torque and empirically derived surface adhesion parameters. As supported by these calculations, microwires are shown to detach from the surface and align vertically in the presence of magnetic fields on the order of 100 gauss. Microwires aligned in this manner are set into a polydimethylsiloxane film where they retain their vertical alignment after the field has been removed and can subsequently be used as a flexible solar absorber layer. Finally, these microwires arrays can be protected for use in electrochemical cells by the conformal deposition of a graphene layer.