830 resultados para Angle-ply composites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the present study was to evaluate in vivo the failure rate of metallic brackets bonded with two orthodontic composites. Nineteen patients with ages ranging from 10.5 to 38.7 years needing corrective orthodontic treatment were selected for study. The enamel surfaces from second premolars to second premolars were treated with Transbond Plus-Self Etching Primer (3M Unitek). Next, 380 orthodontic brackets were bonded on maxillary and mandibular teeth, as follows: 190 with Transbond XT composite (3M Unitek) (control) and 190 with Transbond Plus Color Change (3M Unitek) (experimental) in contralateral quadrants. The bonded brackets were light cured for 40 s, and initial alignment archwires were inserted. Bond failure rates were recorded over a six-month period. At the end of the evaluation, six bond failures occurred, three for each composite. Kaplan-Meyer method and log-rank test (Mantel-Cox) was used for statistical analysis, and no statistically significant difference was found between the materials (p=0.999). Both Transbond XT and Transbond Plus Color Change composites had low debonding rates over the study period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the color stability of composites subjected to different periods of accelerated artificial aging (AAA). A polytetrafluorethylene matrix (10 x 2 mm) was used to fabricate 24 test specimens of three different composites (n=8): Tetric Ceram (Ivoclar/Vivadent); Filtek P90 and Z250 (3M ESPE), shade A3. After light activation for 20 s (FlashLite 1401), polishing and initial color readout (Spectrophotometer PCB 687; BYK Gardner), the test specimens were subjected to AAA (C-UV; Comexim), in 8-h cycles: 4 h exposure to UV-B rays at 50°C and 4 h condensation at 50°C. At the end of each cycle, color readouts were taken and the test ended when the mean value of ΔE attained a level ≥3.30. Tetric Ceram presented alteration in ΔE equal to 3.33 in the first aging cycle. For Filtek P90 and Z250, two (ΔE=3.60) and four (ΔE=3.42) AAA cycles were necessary. After each cycle, there was a reduction of luminosity in all the samples (ΔL). It was concluded that a short period of AAA was sufficient to promote clinically unacceptable color alteration in composites, and that this alteration was material-dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of artificially accelerated aging (AAA) on the surface hardness of eight composite resins: Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma, and Filtek Z100. Sixteen specimens were made from the test piece of each material, using an 8.0 × 2.0 mm teflon matrix. After 24 hours, eight specimens from each material were submitted to three surface hardness readings using a Shimadzu Microhardness Tester for 5 seconds at a load of 50 gf. The other eight specimens remained in the artificially accelerated aging machine for 382 hours and were submitted to the same surface hardness analysis. The means of each test specimen were submitted to the Kolmogorov-Smirnov test (p > 0.05), ANOVA and Tukey test (p < 0.05). With regard to hardness (F = 86.74, p < 0.0001) the analysis showed significant differences among the resin composite brands. But aging did not influence the hardness of any of the resin composites (F = 0.39, p = 0.53). In this study, there was interaction between the resin composite brand and the aging factors (F = 4.51, p < 0.0002). It was concluded that notwithstanding the type of resin, AAA did not influence surface hardness. However, with regard to hardness there was a significant difference among the resin brands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows theoretical models (analytical formulations) to predict the mechanical behavior of thick composite tubes and how some parameters can influence this behavior. Thus, firstly, it was developed the analytical formulations for a pressurized tube made of composite material with a single thick ply and only one lamination angle. For this case, the stress distribution and the displacement fields are investigated as function of different lamination angles and reinforcement volume fractions. The results obtained by the theoretical model are physic consistent and coherent with the literature information. After that, the previous formulations are extended in order to predict the mechanical behavior of a thick laminated tube. Both analytical formulations are implemented as a computational tool via Matlab code. The results obtained by the computational tool are compared to the finite element analyses, and the stress distribution is considered coherent. Moreover, the engineering computational tool is used to perform failure analysis, using different types of failure criteria, which identifies the damaged ply and the mode of failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, structural composites manufactured by carbon fiber/epoxy laminates have been employed in large scale in aircraft industries. These structures require high strength under severe temperature changes of -56° until 80 °C. Regarding this scenario, the aim of this research was to reproduce thermal stress in the laminate plate developed by temperature changes and tracking possible cumulative damages on the laminate using ultrasonic C-scan inspection. The evaluation was based on attenuation signals and the C-scan map of the composite plate. The carbon fiber/epoxy plain weave laminate underwent temperatures of -60° to 80 °C, kept during 10 minutes and repeated for 1000, 2000, 3000 and 4000 times. After 1000 cycles, the specimens were inspected by C-scanning. A few changes in the laminate were observed using the inspection methodology only in specimens cycled 3000 times, or so. According to the found results, the used temperature range did not present enough conditions to cumulative damage in this type of laminate, which is in agreement with the macro - and micromechanical theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previous study on the characterization of effective material properties of a d15 thickness-shear piezoelectric Macro-Fibre Composite (MFC) made of seven layers (Kapton, Acrylic, Electrode, Piezoceramic Fibre and Epoxy Composite, Electrode, Acrylic, Kapton) using a finite element homogenization method has shown that the packaging reduces significantly the shear stiffness of the piezoceramic material and, thus, leads to significantly smaller effective electromechanical coupling coefficient k15 and piezoelectric stress constant e15 when compared to the piezoceramic fibre properties. Therefore, the main objective of this work is to perform a parametric analysis in which the effect of the variations of fibre volume fraction, Epoxy elastic modulus, electrode thickness and active layer thickness on the MFC effective material properties is evaluated. Results indicate that an effective d15 MFC should use relatively thick fibres having relatively high shear modulus and relatively stiff epoxy filler. On the other hand, the electrode thickness does not affect significantly the MFC performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Define and compare numbers and types of occlusal contacts in maximum intercuspation. METHODS: The study consisted of clinical and photographic analysis of occlusal contacts in maximum intercuspation. Twenty-six Caucasian Brazilian subjects were selected before orthodontic treatment, 20 males and 6 females, with ages ranging between 12 and 18 years. The subjects were diagnosed and grouped as follows: 13 with Angle Class I malocclusion and 13 with Angle Class II Division 1 malocclusion. After analysis, the occlusal contacts were classified according to the established criteria as: tripodism, bipodism, monopodism (respectively, three, two or one contact point with the slope of the fossa); cuspid to a marginal ridge; cuspid to two marginal ridges; cuspid tip to opposite inclined plane; surface to surface; and edge to edge. RESULTS: The mean number of occlusal contacts per subject in Class I malocclusion was 43.38 and for Class II Division 1 malocclusion it was 44.38, this difference was not statistically significant (p>0.05). CONCLUSIONS: There is a variety of factors that influence the number of occlusal contacts between a Class I and a Class II, Division 1 malocclusion. There is no standardization of occlusal contact type according to the studied malocclusions. A proper selection of occlusal contact types such as cuspid to fossa or cuspid to marginal ridge and its location in the teeth should be individually defined according to the demands of each case. The existence of an adequate occlusal contact leads to a correct distribution of forces, promoting periodontal health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clay-containing nanocomposites of polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) copolymers having cylindrical domains were obtained by melt extrusion using a tape die. One type of sample (SEBS-MA) had maleic anhydride attached to the middle block. Two types of organoclays were added, namely Cloisite 20A and Cloisite 30B. Small angle X-ray scattering and transmission electron microscopy (TEM) analyses showed that the addition of 20A clay to SEBS and SEBS-MA resulted in nanocomposites with intercalated and partially exfoliated structures, respectively. The addition of 30B clay to SEBS and SEBS-MA promoted the formation of composites containing relatively large micron-sized and partially exfoliated clay particles, respectively. Our TEM analysis revealed that clay particles embedded in SEBS are preferably in contact with the polystyrene cylindrical domains, while in SEBS-MA they are in contact with the maleated matrix. The extrusion processing promoted alignment of the axes of the polystyrene cylinders along the extrusion direction in all samples, and the basal planes of the clay particles were mostly parallel to the main external surfaces of the extruded tapes. © 2013 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the compressive strength of microhybrid (FiltekTM Z250) and nanofilled (FiltekTM Supreme XT) composite resins photo-activated with two different light guide tips, fiber optic and polymer, coupled with one LED. The power density was 653 mW cm-2 when using the fiber optic light tip and 596 mW cm-2 with the polymer. After storage in distilled water at 37± 2 °C for seven days, the samples were subjected to mechanical testing of compressive strength in an EMIC universal mechanical testing machine with a load cell of 5 kN and speed of 0.5 mm min-1. The statistical analysis was performed using ANOVA with a confidence interval of 95% and Tamhane’s test. The results showed that the mean values of compressive strength were not influenced by the different light tips (p > 0.05). However, a statistical difference was observed (p < 0.001) between the microhybrid composite resin photo-activated with the fiber optic light tip and the nanofilled composite resin. Based on these results, it can be concluded that microhybrid composite resin photo-activated with the fiber optic light tip showed better results than nanofilled, regardless of the tip used, and the type of the light tip did not influence the compressive strength of either composite. Thus, the presented results suggest that both the fiber optic and polymer light guide tips provide adequate compressive strength to be used to make restorations. However, the fiber optic light tip associated with microhybrid composite resin may be an interesting option for restorations mainly in posterior teeth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this study was to evaluate the degree of conversion and hardness of different composite resins, photo-activated for 40 s with two different light guide tips, fiber optic and polymer. Methods: Five specimens were made for each group evaluated. The percentage of unreacted carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1). The Vickers hardness measurements were performed in a universal testing machine. A 50 gf load was used and the indenter with a dwell time of 30 seconds. The degree of conversion and hardness mean values were analyzed separately by ANOVA and Tukey's test, with a significance level set at 5%. Results: The mean values of degree of conversion for the polymer and fiber optic light guide tip were statistically different (P<.001). The hardness mean values were statistically different among the light guide tips (P<.001), but also there was difference between top and bottom surfaces (P<.001). Conclusions: The results showed that the resins photo-activated with the fiber optic light guide tip promoted higher values for degree of conversion and hardness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A whisker is a common name of single crystalline inorganic fibre of small dimensions, typically 0.5-1 μm in diameter and 20-50 μm in length. Whiskers are mainly used as reinforcement of ceramics. This work describes the synthesis and characterisation of new whisker types. Ti0.33Ta0.33Nb0.33CxN1-x, TiB2, B4C, and LaxCe1-xB6 have been prepared by carbothermal vapour–liquid–solid (CTR-VLS) growth mechanisms in the temperature range 900-1800°C, in argon or nitrogen. Generally, carbon and different suitable oxides were used as whisker precursors. The oxides reacted via a carbothermal reduction process. A halogenide salt was added to form gaseous metal halogenides or oxohalogenides and small amount of a transition metal was added to catalyse the whisker growth. In this mechanism, the whisker constituents are dissolved into the catalyst, in liquid phase, which becomes supersaturated. Then a whisker could nucleate and grow out under continuous feed of constituents. The syntheses of TiC, TiB2, and B4C were followed at ordinary synthesis conditions by means of mass spectrometry (MS), thermogravimetry (TG), differential thermal analysis (DTA) and quenching. The main reaction starting temperatures and reaction time for the different mixtures was revealed, and it was found that the temperature inside the crucible during the reactions was up to 100°C below the furnace set-point, due to endothermic nature of the reactions. Quench experiments showed that whiskers were formed already when reaching the temperature plateau, but the yield increased fast with the holding time and reached a maximum after about 20-30 minutes. Growth models for whisker formation have been proposed. Alumina based composites reinforced by (2-5 vol.%) TiCnano and TiNnano and 25 vol.% of carbide, and boride phases (whiskers and particulates of TiC, TiN, TaC, NbC, (Ti,Ta)C, (Ti,Ta,Nb)C, SiC, TiB2 and B4C) have been prepared by a developed aqueous colloidal processing route followed by hot pressing for 90 min at 1700°C, 28 MPa or SPS sintering for 5 minutes at 1200-1600°C and 75 MPa. Vickers indentation measurements showed that the lowest possible sintering temperature is to prefer from mechanical properties point of view. In the TiNnano composites the fracture mode was typically intergranular, while it was transgranular in the SiCnano composites. The whisker and particulate composites have been compared in terms of e.g. microstructure and mechanical properties. Generally, additions of whiskers yielded higher fracture toughness compared to particulates. Composites of commercially available SiC whiskers showed best mechanical properties with a low spread but all the other whisker phases, especially TiB2, exhibited a great potential as reinforcement materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questo progetto di ricerca, è stato sviluppato per studiare le caratteristiche anatomofunzionali che definiscono l’articolazione del gomito, ed in modo articolare la presenza dell’angolazione valga che origina dalla diversa orientazione degli assi meccanici dell’avambraccio e del braccio e, denominata in letteratura come carrying angle. L’obiettivo principale di questo lavoro - meglio espresso nei diversi capitoli - è stato, quello di identificare un nuovo approccio di misura per la stima di questo angolo, utilizzabile sia per gli studi di biomeccanica articolare, che per gli studi di analisi del movimento per l’arto superiore. Il primo obiettivo è stato quello di scegliere un algoritmo di calcolo che rispettasse le caratteristiche dell’articolazione, ed in modo particolare abile a minimizzare gli errori introdotti sia nella fase di acquisizione dei punti di repere anatomici, che in quella legata alla predizione del movimento di flesso-estensione, con un modello matematico. Per questo motivo abbiamo dovuto realizzare una serie di misure in un primo tempo su due cadaveri di arto superiore, poi, seguendo le regole classiche per la validazione dell’approccio metodologico adottato, si sono realizzate misure in-vivo, prima in massima estensione e poi durante il movimento. Inizialmente abbiamo pensato di comparare le misure lineari relative alle ampiezze del braccio (ampiezza tra l’epicondilo laterale e mediale) e dell’avambraccio (ampiezza tra lo stiloide ulnare e radiale) con quelle ottenute mediante un antropometro; successivamente dopo aver verificato la ripetibilità tra i diversi operatori nell’ acquisizione dei punti di repere anatomici con il digitalizzatore Faro Arm, abbiamo comparato le misure ottenute relative al carrying angle con quelle di un goniometro standard, classicamente utilizzato nella pratica clinica per la definizione dei range di movimento dell’arto superiore. Infine, considerando la bontà delle misure ottenute, abbiamo riproposto tale metodologia con stumenti stereofotogrammetrici per l’analisi del movimento (VICON System), ottenendo la stessa stabilit`a nell’andamento del carrying angle in funzione della flessione, sia come riportato dagli studi in letteratura, sia come riscontrato nel nostro studio in-vitro. In conclusione, questo lavoro di ricerca ha evidenziato (sia per i risultati ottenuti, che per la elevata numerosità dei soggetti testati), come gli esseri umani presentino una grande variabilità individuale nel valore di questo angolo, e di come questo possa aiutare per la corretta definizione di un modello 3-D dell’arto superiore. Pertanto, gli studi futuri sulla biomeccanica dell’arto superiore dovrebbero includere sempre la valutazione di questa misura.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]When analysing the seismic response of pile groups, a vertically-incident wavefiel is usually employed even though it doesnot necessarily correspond to the worst case scenario. This work aims to study the influence of both type of seismic body wave and its angle of incidence on the dynamic response of pile foundations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Riba Composites, azienda specializzata nella lavorazione della fibra di materiali compositi avanzati, si trova in una vantaggiosa situazione di sviluppo e ampliamento del proprio raggio d’azione, e dove le informazioni da gestire sono sempre più numerose. E’ quindi risultato necessario un supporto informativo che gestisca le informazioni. Dal punto di vista produttivo, l’introduzione del sistema informativo ha l’obiettivo di rispondere alle problematiche legate alla gestione dei materiali, sia a livello di materie prime, che di semilavorati e prodotti finiti in modo tale da gestirli con efficienza ed evitando le rotture di stock. L’obiettivo di fondo che Riba vuole perseguire é di crescere e svilupparsi in logica di lean production che, nell’ottica della gestione dei magazzini significa “approvvigionare i materiali solamente nel momento in cui si manifesta un fabbisogno”. Quest’approccio abbandona la attuale logica di pianificazione “a spinta” (push) che prevedeva la programmazione degli approvvigionamenti e la produzione di semilavorati e prodotti finiti attraverso previsioni basate sull’analisi di dati storici o di mercato, e non attraverso gli ordini effettivamente acquisiti su cui si basa la logica di produzione “snella” (pull). L’implementazione di un sistema ERP ha richiesto un’analisi approfondita dell’azienda in cui si opera così come del prodotto finito e del processo produttivo, a tal punto da poter riconoscere le esigenze e le necessità a cui dovrà rispondere il sistema informativo. A questa fase di analisi e raccolta dati segue un momento di assestamento del sistema informativo, in cui solo una parte di articoli viene gestita dal sistema per poter procedere contemporaneamente con la graduale formazione del personale. La durata del progetto in questione è stata stimata di circa 20 mesi, tempo necessario per poter adattare il sistema e le diverse personalizzazioni ad un processo così complesso come la lavorazione della fibra di carbonio. Termine previsto Agosto 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation concerns active fibre-reinforced composites with embedded shape memory alloy wires. The structural application of active materials allows to develop adaptive structures which actively respond to changes in the environment, such as morphing structures, self-healing structures and power harvesting devices. In particular, shape memory alloy actuators integrated within a composite actively control the structural shape or stiffness, thus influencing the composite static and dynamic properties. Envisaged applications include, among others, the prevention of thermal buckling of the outer skin of air vehicles, shape changes in panels for improved aerodynamic characteristics and the deployment of large space structures. The study and design of active composites is a complex and multidisciplinary topic, requiring in-depth understanding of both the coupled behaviour of active materials and the interaction between the different composite constituents. Both fibre-reinforced composites and shape memory alloys are extremely active research topics, whose modelling and experimental characterisation still present a number of open problems. Thus, while this dissertation focuses on active composites, some of the research results presented here can be usefully applied to traditional fibre-reinforced composites or other shape memory alloy applications. The dissertation is composed of four chapters. In the first chapter, active fibre-reinforced composites are introduced by giving an overview of the most common choices available for the reinforcement, matrix and production process, together with a brief introduction and classification of active materials. The second chapter presents a number of original contributions regarding the modelling of fibre-reinforced composites. Different two-dimensional laminate theories are derived from a parent three-dimensional theory, introducing a procedure for the a posteriori reconstruction of transverse stresses along the laminate thickness. Accurate through the thickness stresses are crucial for the composite modelling as they are responsible for some common failure mechanisms. A new finite element based on the First-order Shear Deformation Theory and a hybrid stress approach is proposed for the numerical solution of the two-dimensional laminate problem. The element is simple and computationally efficient. The transverse stresses through the laminate thickness are reconstructed starting from a general finite element solution. A two stages procedure is devised, based on Recovery by Compatibility in Patches and three-dimensional equilibrium. Finally, the determination of the elastic parameters of laminated structures via numerical-experimental Bayesian techniques is investigated. Two different estimators are analysed and compared, leading to the definition of an alternative procedure to improve convergence of the estimation process. The third chapter focuses on shape memory alloys, describing their properties and applications. A number of constitutive models proposed in the literature, both one-dimensional and three-dimensional, are critically discussed and compared, underlining their potential and limitations, which are mainly related to the definition of the phase diagram and the choice of internal variables. Some new experimental results on shape memory alloy material characterisation are also presented. These experimental observations display some features of the shape memory alloy behaviour which are generally not included in the current models, thus some ideas are proposed for the development of a new constitutive model. The fourth chapter, finally, focuses on active composite plates with embedded shape memory alloy wires. A number of di®erent approaches can be used to predict the behaviour of such structures, each model presenting different advantages and drawbacks related to complexity and versatility. A simple model able to describe both shape and stiffness control configurations within the same context is proposed and implemented. The model is then validated considering the shape control configuration, which is the most sensitive to model parameters. The experimental work is divided in two parts. In the first part, an active composite is built by gluing prestrained shape memory alloy wires on a carbon fibre laminate strip. This structure is relatively simple to build, however it is useful in order to experimentally demonstrate the feasibility of the concept proposed in the first part of the chapter. In the second part, the making of a fibre-reinforced composite with embedded shape memory alloy wires is investigated, considering different possible choices of materials and manufacturing processes. Although a number of technological issues still need to be faced, the experimental results allow to demonstrate the mechanism of shape control via embedded shape memory alloy wires, while showing a good agreement with the proposed model predictions.