971 resultados para Aerosol Mass Spectrometry
Resumo:
Three chemical species related to biomass burning, levoglucosan, potassium and water-soluble organic carbon (WSOC), were measured in aerosol samples collected in a rural area on the outskirts of the municipality of Ourinhos (Sao Paulo State, Brazil). This region is representative of the rural interior of the State, where the economy is based on agro-industrial production, and the most important crop is sugar cane. The manual harvesting process requires that the cane be first burned to remove excess foliage, leading to large emissions of particulate materials to the atmosphere. Most of the levoglucosan (68-89%) was present in small particles (<1.5 mu m), and its concentration in total aerosol ranged from 25 to 1186 ng m(-3). The highest values were found at night, when most of the biomass burning occurs. In contrast, WSOC showed no diurnal pattern, with an average concentration of 5.38 +/- 2.97 mu g m(-3) (n = 27). A significant linear correlation between levoglucosan and WSOC (r = 0.54; n = 26; p < 0.0001) confirmed that biomass burning was in fact an important source of WSOC in the study region. A moderate (but significant) linear correlation between levoglucosan and potassium concentrations (r = 0.62; n = 40; p < 0.0001) was indicative of the influence of other sources of potassium in the study region, such as soil resuspension and fertilizers. When only the fine particles (<1.5 pm; typical of biomass burning) were considered, the linear coefficient increased to 0.91 (n = 9). In this case, the average levoglucosan/K+ ratio was 0.24, which may be typical of biomass burning in the study region. This ratio is about 5 times lower than that previously found for Amazon aerosol collected during the day, when flaming combustion prevails. This suggests that the levoglucosan/K+ ratio may be especially helpful for characterization of the type of vegetation burned (such as crops or forest), when biomass-burning is the dominant source of potassium. The relatively high concentrations of WSOC (and inorganic ions) suggest an important influence on the formation of cloud condensation nuclei, which is likely to affect cloud formation and precipitation patterns. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Determination of chlorine using the molecular absorption of aluminum mono-chloride (AlCl) at the 261.418 nm wavelength was accomplished by high-resolution continuum source molecular absorption spectrometry using a transversely heated graphite tube furnace with an integrated platform. For the analysis. 10 mu L of the sample followed by 10 mu L of a solution containing Al-Ag-Sr modifier, (1 g L-1 each), were directly injected onto the platform. A spectral interference due to the use of Al-Ag-Sr as mixed modifier was easily corrected by the least-squares algorithm present in the spectrometer software. The pyrolysis and vaporization temperatures were 500 degrees C and 2200 degrees C, respectively. To evaluate the feasibility of a simple procedure for the determination of chlorine in food samples present in our daily lives, two different digestion methods were applied, namely (A) an acid digestion method using HNO3 only at room temperature, and (B) a digestion method with Ag, HNO3 and H2O2, where chlorine is precipitated as a low-solubility salt (AgCl), which is then dissolved with ammonia solution. The experimental results obtained with method B were in good agreement with the certified values and demonstrated that the proposed method is more accurate than method A. This is because the formation of silver chloride prevented analyte losses by volatilization. The limit of detection (LOD, 3 sigma/s) for Cl in methods A and B was 18 mu g g(-1) and 9 mu g g(-1), respectively, 1.7 and 3.3 times lower compared to published work using inductively coupled plasma optical emission spectrometry, and absolute LODs were 2.4 and 1.2 ng, respectively. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The dissertation presented here deals with high-precision Penning trap mass spectrometry on short-lived radionuclides. Owed to the ability of revealing all nucleonic interactions, mass measurements far off the line of ß-stability are expected to bring new insight to the current knowledge of nuclear properties and serve to test the predictive power of mass models and formulas. In nuclear astrophysics, atomic masses are fundamental parameters for the understanding of the synthesis of nuclei in the stellar environments. This thesis presents ten mass values of radionuclides around A = 90 interspersed in the predicted rp-process pathway. Six of them have been experimentally determined for the first time. The measurements have been carried out at the Penning-trap mass spectrometer SHIPTRAP using the destructive time-of-fligh ion-cyclotron-resonance (TOF-ICR) detection technique. Given the limited performance of the TOF-ICR detection when trying to investigate heavy/superheavy species with small production cross sections (σ< 1 μb), a new detection system is found to be necessary. Thus, the second part of this thesis deals with the commissioning of a cryogenic double-Penning trap system for the application of a highly-sensitive, narrow-band Fourier-transform ion-cyclotron-resonance (FT-ICR) detection technique. With the non-destructive FT-ICR detection method a single singly-charged trapped ion will provide the required information to determine its mass. First off-line tests of a new detector system based on a channeltron with an attached conversion dynode, of a cryogenic pumping barrier, to guarantee ultra-high vacuum conditions during mass determination, and of the detection electronics for the required single-ion sensitivity are reported.
Resumo:
Atmospheric aerosol particles directly impact air quality and participate in controlling the climate system. Organic Aerosol (OA) in general accounts for a large fraction (10–90%) of the global submicron (PM1) particulate mass. Chemometric methods for source identification are used in many disciplines, but methods relying on the analysis of NMR datasets are rarely used in atmospheric sciences. This thesis provides an original application of NMR-based chemometric methods to atmospheric OA source apportionment. The method was tested on chemical composition databases obtained from samples collected at different environments in Europe, hence exploring the impact of a great diversity of natural and anthropogenic sources. We focused on sources of water-soluble OA (WSOA), for which NMR analysis provides substantial advantages compared to alternative methods. Different factor analysis techniques are applied independently to NMR datasets from nine field campaigns of the project EUCAARI and allowed the identification of recurrent source contributions to WSOA in European background troposphere: 1) Marine SOA; 2) Aliphatic amines from ground sources (agricultural activities, etc.); 3) Biomass burning POA; 4) Biogenic SOA from terpene oxidation; 5) “Aged” SOAs, including humic-like substances (HULIS); 6) Other factors possibly including contributions from Primary Biological Aerosol Particles, and products of cooking activities. Biomass burning POA accounted for more than 50% of WSOC in winter months. Aged SOA associated with HULIS was predominant (> 75%) during the spring-summer, suggesting that secondary sources and transboundary transport become more important in spring and summer. Complex aerosol measurements carried out, involving several foreign research groups, provided the opportunity to compare source apportionment results obtained by NMR analysis with those provided by more widespread Aerodyne aerosol mass spectrometers (AMS) techniques that now provided categorization schemes of OA which are becoming a standard for atmospheric chemists. Results emerging from this thesis partly confirm AMS classification and partly challenge it.
Resumo:
Iodine chemistry plays an important role in the tropospheric ozone depletion and the new particle formation in the Marine Boundary Layer (MBL). The sources, reaction pathways, and the sinks of iodine are investigated using lab experiments and field observations. The aims of this work are, firstly, to develop analytical methods for iodine measurements of marine aerosol samples especially for iodine speciation in the soluble iodine; secondly, to apply the analytical methods in field collected aerosol samples, and to estimate the characteristics of aerosol iodine in the MBL. Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) was the technique used for iodine measurements. Offline methods using water extraction and Tetra-methyl-ammonium-hydroxide (TMAH) extraction were applied to measure total soluble iodine (TSI) and total insoluble iodine (TII) in the marine aerosol samples. External standard calibration and isotope dilution analysis (IDA) were both conducted for iodine quantification and the limits of detection (LODs) were both 0.1 μg L-1 for TSI and TII measurements. Online couplings of Ion Chromatography (IC)-ICP-MS and Gel electrophoresis (GE)-ICP-MS were both developed for soluble iodine speciation. Anion exchange columns were adopted for IC-ICP-MS systems. Iodide, iodate, and unknown signal(s) were observed in these methods. Iodide and iodate were separated successfully and the LODs were 0.1 and 0.5 μg L-1, respectively. Unknown signals were soluble organic iodine species (SOI) and quantified by the calibration curve of iodide, but not clearly identified and quantified yet. These analytical methods were all applied to the iodine measurements of marine aerosol samples from the worldwide filed campaigns. The TSI and TII concentrations (medians) in PM2.5 were found to be 240.87 pmol m-3 and 105.37 pmol m-3 at Mace Head, west coast of Ireland, as well as 119.10 pmol m-3 and 97.88 pmol m-3 in the cruise campaign over the North Atlantic Ocean, during June – July 2006. Inorganic iodine, namely iodide and iodate, was the minor iodine fraction in both campaigns, accounting for 7.3% (median) and 5.8% (median) in PM2.5 iodine at Mace Head and over the North Atlantic Ocean, respectively. Iodide concentrations were higher than iodate in most of the samples. In the contrast, more than 90% of TSI was SOI and the SOI concentration was correlated significantly with the iodide concentration. The correlation coefficients (R2) were both higher than 0.5 at Mace Head and in the first leg of the cruise. Size fractionated aerosol samples collected by 5 stage Berner impactor cascade sampler showed similar proportions of inorganic and organic iodine. Significant correlations were obtained in the particle size ranges of 0.25 – 0.71 μm and 0.71 – 2.0 μm between SOI and iodide, and better correlations were found in sunny days. TSI and iodide existed mainly in fine particle size range (< 2.0 μm) and iodate resided in coarse range (2.0 – 10 μm). Aerosol iodine was suggested to be related to the primary iodine release in the tidal zone. Natural meteorological conditions such as solar radiation, raining etc were observed to have influence on the aerosol iodine. During the ship campaign over the North Atlantic Ocean (January – February 2007), the TSI concentrations (medians) ranged 35.14 – 60.63 pmol m-3 among the 5 stages. Likewise, SOI was found to be the most abundant iodine fraction in TSI with a median of 98.6%. Significant correlation also presented between SOI and iodide in the size range of 2.0 – 5.9 μm. Higher iodate concentration was again found in the higher particle size range, similar to that at Mace Head. Airmass transport from the biogenic bloom region and the Antarctic ice front sector was observed to play an important role in aerosol iodine enhancement. The TSI concentrations observed along the 30,000 km long cruise round trip from East Asia to Antarctica during November 2005 – March 2006 were much lower than in the other campaigns, with a median of 6.51 pmol m-3. Approximately 70% of the TSI was SOI on average. The abundances of inorganic iodine including iodine and iodide were less than 30% of TSI. The median value of iodide was 1.49 pmol m-3, which was more than four fold higher than that of iodate (median, 0.28 pmol m-3). Spatial variation indicated highest aerosol iodine appearing in the tropical area. Iodine level was considerably lower in coastal Antarctica with the TSI median of 3.22 pmol m-3. However, airmass transport from the ice front sector was correlated with the enhance TSI level, suggesting the unrevealed source of iodine in the polar region. In addition, significant correlation between SOI and iodide was also shown in this campaign. A global distribution in aerosol was shown in the field campaigns in this work. SOI was verified globally ubiquitous due to the presence in the different sampling locations and its high proportion in TSI in the marine aerosols. The correlations between SOI and iodide were obtained not only in different locations but also in different seasons, implying the possible mechanism of iodide production through SOI decomposition. Nevertheless, future studies are needed for improving the current understanding of iodine chemistry in the MBL (e.g. SOI identification and quantification as well as the update modeling involving organic matters).
Resumo:
Der Einsatz von Penningfallen in der Massenspektrometrie hat zu einem einmaligen Genauigkeitssprung geführt. Dadurch wurden Massenwerte verschiedenster Atome zu wichtigen Eingangsparametern bei immer mehr physikalischen Fragestellungen. Die Massenspektrometrie mit Hilfe von Penningfallen basiert auf der Bestimmung der freien Zyklotronfrequenz eines Ions in einem homogenen Magnetfeld νc=qB/(2πm). Sie wird mit Flugzeitmethode (TOF-ICR) bestimmt, wobei eine relative Massenungenauigkeit δm/m von wenigen 10^-9 bei Nukliden mit Lebensdauern von <500 ms erreicht wird. Dies wurde durch die im Rahmen dieser Arbeit erstmals in der Penningfallen-Massenspektrometrie eingesetzten Ramsey-Methode möglich. Dabei werden zeitlich separierte, oszillierenden Feldern zur resonanten Ionenanregung genutzt, um die Frequenzmessung durch die Flugzeitmethode zu verbessern. Damit wurden am Penningfallenmassenspektrometer ISOLTRAP an ISOLDE/CERN die Massen der Nuklide 26,27Al und 38,39Ca bestimmt. Alle Massen wurden in die „Atomic Mass Evaluation“ eingebettet. Die Massenwerte von 26Al und 38Ca dienten insbesondere zu Tests des Standardmodells. Um mit Massenwerten fundamentale Symmetrien oder die Quantenelektrodynamik (QED) in extremen Feldern zu testen wurde ein neues Penningfallenprojekt (PENTATRAP) für hochpräzise Massenmessungen an hochgeladenen Ionen konzipiert. In dieser Doktorarbeit wurde vornehmlich die Entwicklung der Penningfallen betrieben. Eine Neuerung bei Penningfallenexperimenten ist dabei die permanente Beobachtung des Magnetfeldes B und seiner zeitlichen Fluktuationen durch so genannte „Monitorfallen“.
Resumo:
Wasserlösliche organische Verbindungen (WSOCs) sind Hauptbestandteile atmosphärischer Aerosole, die bis zu ~ 50% und mehr der organischen Aerosolfraktion ausmachen. Sie können die optischen Eigenschaften sowie die Hygroskopizität von Aerosolpartikeln und damit deren Auswirkungen auf das Klima beeinflussen. Darüber hinaus können sie zur Toxizität und Allergenität atmosphärischer Aerosole beitragen.In dieser Studie wurde Hochleistungsflüssigchromatographie gekoppelt mit optischen Diodenarraydetektion und Massenspektrometrie (HPLC-DAD-MS und HPLC-MS/MS) angewandt, um WSOCs zu analysieren, die für verschiedene Aerosolquellen und -prozesse charakteristisch sind. Niedermolekulare Carbonsäuren und Nitrophenole wurden als Indikatoren für die Verbrennung fossiler Brennstoffe und die Entstehung sowie Alterung sekundärer organischer Aerosole (SOA) aus biogenen Vorläufern untersucht. Protein-Makromoleküle wurden mit Blick auf den Einfluss von Luftverschmutzung und Nitrierungsreaktionen auf die Allergenität primärer biologischer Aerosolpartikel – wie Pollen und Pilzsporen – untersucht.rnFilterproben von Grob- und Feinstaubwurden über ein Jahr hinweg gesammelt und auf folgende WSOCs untersucht: die Pinen-Oxidationsprodukte Pinsäure, Pinonsäure und 3-Methyl-1,2,3-Butantricarbonsäure (3-MBTCA) sowie eine Vielzahl anderer Dicarbonsäuren und Nitrophenole. Saisonale Schwankungen und andere charakteristische Merkmale werden mit Blick auf Aerosolquellen und -senken im Vergleich zu Daten anderen Studien und Regionen diskutiert. Die Verhätlnisse von Adipinsäure und Phthalsäure zu Azelainsäure deuten darauf hin, dass die untersuchten Aerosolproben hauptsächlich durch biogene Quellen beeinflusst werden. Eine ausgeprägte Arrhenius-artige Korrelation wurde zwischen der 3-MBTCA-¬Konzentration und der inversen Temperatur beobachtet (R2 = 0.79, Ea = 126±10 kJ mol-1, Temperaturbereich 275–300 K). Modellrechnungen zeigen, dass die Temperaturabhängigkeit auf eine Steigerung der photochemischen Produktionsraten von 3-MBTCA durch erhöhte OH-Radikal-Konzentrationen bei erhöhten Temperaturen zurückgeführt werden kann. Im Vergleich zur chemischen Reaktionskinetik scheint der Einfluss von Gas-Partikel-Partitionierungseffekten nur eine untergeordnete Rolle zu spielen. Die Ergebnisse zeigen, dass die OH-initiierte Oxidation von Pinosäure der geschwindigkeitsbestimmende Schritt der Bildung von 3-MBTCA ist. 3-MBTCA erscheint somit als Indikator für die chemische Alterung von biogener sekundärer organischer Aerosole (SOA) durch OH-Radikale geeignet. Eine Arrhenius-artige Temperaturabhängigkeit wurde auch für Pinäure beobachtet und kann durch die Temperaturabhängigkeit der biogenen Pinen-Emissionen als geschwindigkeitsbestimmender Schritt der Pinsäure-Bildung erklärt werden (R2 = 0.60, Ea = 84±9 kJ mol-1).rn rnFür die Untersuchung von Proteinnitrierungreaktionen wurde nitrierte Protein¬standards durch Flüssigphasenreaktion von Rinderserumalbumin (BSA) und Ovalbumin (OVA) mit Tetranitromethan (TNM) synthetisiert.Proteinnitrierung erfolgt vorrangig an den Resten der aromatischen Aminosäure Tyrosin auf, und mittels UV-Vis-Photometrie wurde der Proteinnnitrierungsgrad (ND) bestimmt. Dieser ist definiert als Verhältnis der mittleren Anzahl von Nitrotyrosinresten zur Tyrosinrest-Gesamtzahl in den Proteinmolekülen. BSA und OVA zeigten verschiedene Relationen zwischen ND und TNM/Tyrosin-Verhältnis im Reaktionsgemisch, was vermutlich auf Unterschiede in den Löslichkeiten und den molekularen Strukturen der beiden Proteine zurück zu führen ist.rnDie Nitrierung von BSA und OVA durch Exposition mit einem Gasgemisch aus Stickstoffdioxid (NO2) und Ozon (O3) wurde mit einer neu entwickelten HPLC-DAD-¬Analysemethode untersucht. Diese einfache und robuste Methode erlaubt die Bestimmung des ND ohne Hydrolyse oder Verdau der untersuchten Proteine und ernöglicht somit eine effiziente Untersuchung der Kinetik von Protein¬nitrierungs-Reaktionen. Für eine detaillierte Produktstudien wurden die nitrierten Proteine enzymatisch verdaut, und die erhaltenen Oligopeptide wurden mittels HPLC-MS/MS und Datenbankabgleich mit hoher Sequenzübereinstimmung analysiert. Die Nitrierungsgrade individueller Nitrotyrosin-Reste (NDY) korrelierten gut mit dem Gesamt-Proteinnitrierungsgrad (ND), und unterschiedliche Verhältnisse von NDY zu ND geben Aufschluss über die Regioselektivität der Reaktion. Die Nitrierungmuster von BSA und OVA nach Beahndlung mit TNM deuten darauf hin, dass die Nachbarschaft eines negativ geladenen Aminosäurerestes die Tyrosinnitrierung fördert. Die Behandlung von BSA durch NO2 und O3 führte zu anderend Nitrierungemustern als die Behandlung mit TNM, was darauf hindeutet, dass die Regioselektivität der Nitrierung vom Nitrierungsmittel abhängt. Es zeigt sich jedoch, dass Tyrosinreste in Loop-Strukturen bevorzugt und unabhängig vom Reagens nitriert werden.Die Methoden und Ergebnisse dieser Studie bilden eine Grundlage für weitere, detaillierte Untersuchungen der Reaktionskinetik sowie der Produkte und Mechanismen von Proteinnitrierungreaktionen. Sie sollen helfen, die Zusammenhänge zwischen verkehrsbedingten Luftschadstoffen wie Stickoxiden und Ozon und der Allergenität von Luftstaub aufzuklären.rn
Resumo:
Im Zuge dieser Arbeit ist ein Massenspektrometer zur flugzeuggetragenen Messung von HNO3 und HONO auf dem neuen deutschen Forschungsflugzeug HALO aufgebaut worden (AIMS - Atmospheric chemical Ionization Mass Spectrometer). Die Ionisation der HNO3- und HONO-Moleküle erfolgt chemisch durch Reaktion mit SF5- -Ionen. Basierend auf den Ergebnissen von Laborversuchen wurden die Betriebsparameter optimiert, die Einzelkomponenten im HALO-Rack zusammengestellt und eine Einlassleitung entworfen, die Wandeffekte minimiert und Untergrundmessungen und HNO3-Kalibrationen im Flug ermöglicht. Die Empfindlichkeit der Messung von HNO3 und HONO wurde ebenso im Labor untersucht wie Interferenzen mit Wasserdampf und Ozon. Die HONO-Vergleichskampagne FIONA am Europäischen Photoreaktor (EUPHORE) in Valencia war die erste Messkampagne mit AIMS. Bei den offenen Vergleichsmessungen stimmten die von AIMS gemessenen HONO-Mischungsverhältnisse innerhalb +-20% mit dem Median von 9 weiteren HONO-Messungen überein. Die ersten flugzeuggetragenen Messungen mit AIMS werden im Verlauf der HALO-Missionen ML-CIRRUS und TACTS stattfinden. Neben dem Aufbau und der Charakterisierung von AIMS war die Analyse der Aufnahme von HNO3 in Eispartikel von Kondensstreifen und Zirren Gegenstand dieser Arbeit. Die Aufnahme von HNO3 in Kondensstreifeneispartikel wurde erstmals systematisch anhand einer Flugzeugmesskampagne (CIRRUS-III) untersucht. Während CIRRUS-III im November 2006 wurden Zirren und zufällig knapp 40 persistente Kondensstreifen über Deutschland und Nordeuropa beprobt. Die Messungen fanden in Höhen zwischen 10 und 11.5 km und bei Temperaturen zwischen 210 und 230 K statt. Die HNO3-Konzentration wurde mit Hilfe von NOy-Messungen bestimmt. Im Mittel war in Kondensstreifen ein größerer Anteil des Gesamt-HNO3 in den Eispartikeln gebunden (6 %) als in Zirren (3 %). Das Gasphasenäquivalent des eisgebundenen HNO3 betrug in Zirren durchschnittlich 6 pmol/mol, in Kondensstreifen 14 pmol/mol und in jungen Kondensstreifen (Alter&lt;1 h) 21 pmol/mol. Das Mischungsverhältnis von HNO3 zu H2O in Eispartikeln war in Kondensstreifen leicht höher als in Zirren unter ähnlichen meteorologischen Bedingungen. Ursächlich für die höheren Werte in persistenten Kondensstreifen sind wahrscheinlich die hohen HNO3-Konzentrationen in den Abgasfahnen der Flugzeuge bei der Kondensstreifenbildung. Die beobachtete Abnahme des HNO3/H2O-Molverhältnisses mit zunehmendem Effektivdurchmesser der Eispartikel deutet an, dass die HNO3-Konzentrationen in Eispartikeln von jungen Kondensstreifen durch die Aufnahme von Abgas-HNO3 in die gefrierenden Aerosolpartikel bestimmt wird. Die Konzentrationen in älteren Kondensstreifen werden zunehmend durch das Vergraben von Umgebungs-HNO3 in wachsenden Eispartikeln kontrolliert. Diese Studie leistet einen Beitrag zu einem besseren Prozessverständnis der HNO3-Aufnahme in atmosphärische Eispartikel. Sie motiviert die Nutzung persistenter Kondensstreifen als atmosphärisches Labor zur Untersuchung der Spurengasaufnahme in wachsende Eispartikel.
Resumo:
Biogene flüchtige organische Verbindungen (BFOV) werden in großen Mengen aus terrestrischenrnÖkosystemen, insbesondere aus Wäldern und Wiesen, in die untere Troposphäre emittiert. Austausch-rnFlüsse von BFOVs sind in der troposphärischen Chemie wichtig, weil sie eine bedeutende Rolle in derrnOzon- und Aerosolbildung haben. Trotzdem bleiben die zeitliche und räumliche Änderung der BFOVrnEmissionen und ihre Rolle in Bildung und Wachstum von Aerosolen ungewiss.rnDer Fokus dieser Arbeit liegt auf der in-situ Anwendung der Protonen Transfer ReaktionsrnMassenspektrometrie (PTR-MS) und der Messung von biogenen flüchtigen organischen Verbindungen inrnnordländischen, gemäßigten und tropischen Waldökosystemen während drei unterschiedlicherrnFeldmesskampagnen. Der Hauptvorteil der PTR-MS-Technik liegt in der hohen Messungsfrequenz,rnwodurch eine eventuelle Änderung in der Atmosphäre durch Transport, Vermischung und Chemiernonline beobachtet werden kann. Die PTR-MS-Messungen wurden zweimal am Boden aus und einmalrnvon einem Forschungsflugzug durchgeführt.rnIn Kapitel 3 werden die PTR-MS-Daten, gesammelt während der Flugmesskampagne über demrntropischen Regenwald, vorgelegt. Diese Studie zeigt den Belang der Grenzschichtdynamik für diernVerteilung von Spurengasen mittels eines eindimensionalen Säule - Chemie und KlimaModells (SCM).rnDer Tagesablauf von Isopren zeigte zwischen 14:00 und 16:15 Uhr lokaler Zeit einen Mittelwert vonrn5.4 ppbv auf der Höhe der Baumspitzen und von 3.3 ppbv über 300 m Höhe. Dies deutet darauf hin, dassrnsowohl der turbulente Austausch als auch die hohe Reaktionsfähigkeit von Isopren mit den OxidantienrnOH und Ozon eine wichtige Rolle spielen. Nach dem Ausgleich von chemischen Verlusten undrnEntrainment (Ein- und Ausmischung von Luft an der Grenzschicht), wurde ein Fluss vonrn8.4 mg Isopren m-2h-1 unter teilweise bewölkten Bedingungen für den tropischen Regenwald in derrnGuyanregion abgeschätzt. Dies entspricht einem täglichen Emissionsfluss von 28 mg Isopren prornQuadratmeter.rnIm Kapitel 4 werden die Messungen, welche auf einer Hügellage in gemäßigter Breite inrnsüddeutschland stattgefunden haben, diskutiert. Bei diesem Standort ist die Grenzschicht nachts unter diernStandorthöhe abgefallen, was den Einsatzort von Emissionen abgesondert hatte. Während diernGrenzschicht morgens wieder über die Höhe des Einsatzortes anstieg, konnten die eingeschlossenenrnnächtlichen Emissionen innerhalb der bodennahen Schicht beobachtet werden. Außerdem wurde einrndeutlicher Anstieg von flüchtigen organischen Verbindungen gemessen, wenn die Luftmassen überrnMünchen geführt wurden oder wenn verschmutzte Luftmassen aus dem Po-Tal über die Alpen nachrnDeutschland transportiert wurden. Daten von dieser Kampagne wurden genutzt, um die Änderungen inrndem Mischungsverhältnis der flüchtigen organischen Verbindungen, verbunden mit dem Durchfluss vonrnwarmen und kalten Wetterfronten sowie bei Regen zu untersuchen.rnIm Kapitel 5 werden PTR-MS-Messungen aus dem nördlichen Nadelwaldgürtel beschrieben. Starkernnächtliche Inversionen mit einer niedrigen Windgeschwindigkeit fingen die Emissionen vonrnnahegelegenen Kiefernwäldern und andere BFOV-Quellen ab, was zu hohen nächtlichen BFOVMischverhältnissenrnführte. Partikelereignisse wurden für Tag und Nacht detailliert analysiert. Diernnächtlichen Partikelereignisse erfolgten synchron mit starken extremen von Monoterpenen, obwohl dasrnzweite Ereignis Kernbildung einschloss und nicht mit Schwefelsäure korrelierte. Die MonoterpenrnMischungsverhältnisse von über 16 ppbv waren unerwartet hoch für diese Jahreszeit. NiedrigernWindgeschwindigkeiten und die Auswertung von Rückwärtstrajektorien deuten auf eine konzentrierternQuelle in der Nähe von Hyytiälä hin. Die optische Stereoisomerie von Monoterpenen hat bestätigt, dassrndie Quelle unnatürlich ist, da das Verhältnis von [(+)-α-pinen]/[(−)-α-pinen] viel höher ist als dasrnnatürliches Verhältnis der beiden Enantiomeren.
Resumo:
Primary varicella-zoster virus (VZV) infection during childhood leads to varicella commonly known as chickenpox. After primary infection has occurred VZV establishes latency in the host. During subsequent lifetime the virus can cause reactivated infection clinically known as herpes zoster or shingles. In immunodeficient patients’ dissemination of the virus can lead to life-threatening disease. Withdrawal of acyclovir drug prophylaxis puts allogeneic hematopoietic stem-cell transplantation (HSCT) patients at increased risk for herpes zoster as long as VZV-specific cellular immunity is impaired. Although an efficient live attenuated VZV vaccine for zoster prophylaxis exists, it is not approved in immunocompromised patients due to safety reasons. Knowledge of immunogenic VZV proteins would allow designing a noninfectious nonhazardous subunit vaccine suitable for patients with immunodeficiencies. The objective of this study was to identify T cell defined virus proteins of a VZV-infected Vero cell extract that we have recently described as a reliable antigen format for interferon-gamma (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assays (Distler et al. 2008). We first separated the VZV-infected/-uninfected Vero cell extracts by size filtration and reverse-phase high performance liquid chromatography (RP-HPLC). The collected fractions were screened for VZV reactivity with peripheral blood mononuclear cells (PBMCs) of VZV-seropositive healthy individuals in the sensitive IFN-γ ELISpot assay. Using this strategy, we successfully identified bioactive fractions that contained immunogenic VZV material. VZV immune reactivity was mediated by CD4+ memory T lymphocytes (T cells) of VZV-seropositive healthy individuals as demonstrated in experiments with HLA blockade antibodies and T cell subpopulations already published by Distler et al. We next analyzed the bioactive fractions with electrospray ionization mass spectrometry (ESI-MS) techniques and identified the sequences of three VZV-derived proteins: glycoprotein E (gE); glycoprotein B (gB), and immediate early protein 62 (IE62). Complementary DNA of these identified proteins was used to generate in vitro transcribed RNA for effective expression in PBMCs by electroporation. We thereby established a reliable and convenient IFN-γ ELISPOT approach to screen PBMCs of healthy donors and HSCT patients for T cell reactivity to single full-length VZV proteins. Application in 10 VZV seropositive healthy donors demonstrated much stronger recognition of glycoproteins gE and gB compared to IE62. In addition, monitoring experiments with ex vivo PBMCs of 3 allo-HSCT patients detected strongly increased CD4+ T cell responses to gE and gB for several weeks to months after zoster onset, while IE62 reactivity remained moderate. Overall our results show for the first time that VZV glycoproteins gE and gB are major targets of the post-transplant anti-zoster CD4+ T cell response. The screening approach introduced herein may help to select VZV proteins recognized by memory CD4+ T cells for inclusion in a subunit vaccine, which can be safely used for zoster prophylaxis in immunocompromised HSCT patients.
Resumo:
Atmosphärische Aerosolpartikel wirken in vielerlei Hinsicht auf die Menschen und die Umwelt ein. Eine genaue Charakterisierung der Partikel hilft deren Wirken zu verstehen und dessen Folgen einzuschätzen. Partikel können hinsichtlich ihrer Größe, ihrer Form und ihrer chemischen Zusammensetzung charakterisiert werden. Mit der Laserablationsmassenspektrometrie ist es möglich die Größe und die chemische Zusammensetzung einzelner Aerosolpartikel zu bestimmen. Im Rahmen dieser Arbeit wurde das SPLAT (Single Particle Laser Ablation Time-of-flight mass spectrometer) zur besseren Analyse insbesondere von atmosphärischen Aerosolpartikeln weiterentwickelt. Der Aerosoleinlass wurde dahingehend optimiert, einen möglichst weiten Partikelgrößenbereich (80 nm - 3 µm) in das SPLAT zu transferieren und zu einem feinen Strahl zu bündeln. Eine neue Beschreibung für die Beziehung der Partikelgröße zu ihrer Geschwindigkeit im Vakuum wurde gefunden. Die Justage des Einlasses wurde mithilfe von Schrittmotoren automatisiert. Die optische Detektion der Partikel wurde so verbessert, dass Partikel mit einer Größe < 100 nm erfasst werden können. Aufbauend auf der optischen Detektion und der automatischen Verkippung des Einlasses wurde eine neue Methode zur Charakterisierung des Partikelstrahls entwickelt. Die Steuerelektronik des SPLAT wurde verbessert, so dass die maximale Analysefrequenz nur durch den Ablationslaser begrenzt wird, der höchsten mit etwa 10 Hz ablatieren kann. Durch eine Optimierung des Vakuumsystems wurde der Ionenverlust im Massenspektrometer um den Faktor 4 verringert.rnrnNeben den hardwareseitigen Weiterentwicklungen des SPLAT bestand ein Großteil dieser Arbeit in der Konzipierung und Implementierung einer Softwarelösung zur Analyse der mit dem SPLAT gewonnenen Rohdaten. CRISP (Concise Retrieval of Information from Single Particles) ist ein auf IGOR PRO (Wavemetrics, USA) aufbauendes Softwarepaket, das die effiziente Auswertung der Einzelpartikel Rohdaten erlaubt. CRISP enthält einen neu entwickelten Algorithmus zur automatischen Massenkalibration jedes einzelnen Massenspektrums, inklusive der Unterdrückung von Rauschen und von Problemen mit Signalen die ein intensives Tailing aufweisen. CRISP stellt Methoden zur automatischen Klassifizierung der Partikel zur Verfügung. Implementiert sind k-means, fuzzy-c-means und eine Form der hierarchischen Einteilung auf Basis eines minimal aufspannenden Baumes. CRISP bietet die Möglichkeit die Daten vorzubehandeln, damit die automatische Einteilung der Partikel schneller abläuft und die Ergebnisse eine höhere Qualität aufweisen. Daneben kann CRISP auf einfache Art und Weise Partikel anhand vorgebener Kriterien sortieren. Die CRISP zugrundeliegende Daten- und Infrastruktur wurde in Hinblick auf Wartung und Erweiterbarkeit erstellt. rnrnIm Rahmen der Arbeit wurde das SPLAT in mehreren Kampagnen erfolgreich eingesetzt und die Fähigkeiten von CRISP konnten anhand der gewonnen Datensätze gezeigt werden.rnrnDas SPLAT ist nun in der Lage effizient im Feldeinsatz zur Charakterisierung des atmosphärischen Aerosols betrieben zu werden, während CRISP eine schnelle und gezielte Auswertung der Daten ermöglicht.
Resumo:
Die Dissertationsschrift beschäftigt sich mit der Entwicklung und Anwendung einer alternativen Probenzuführungstechnik für flüssige Proben in der Massenspektrometrie. Obwohl bereits einige Anstrengungen zur Verbesserung unternommen wurden, weisen konventionelle pneumatische Zerstäuber- und Sprühkammersysteme, die in der Elementspurenanalytik mittels induktiv gekoppeltem Plasma (ICP) standardmäßig verwendet werden, eine geringe Gesamteffizienz auf. Pneumatisch erzeugtes Aerosol ist durch eine breite Tropfengrößenverteilung gekennzeichnet, was den Einsatz einer Sprühkammer bedingt, um die Aerosolcharakteristik an die Betriebsbedingungen des ICPs anzupassen.. Die Erzeugung von Tropfen mit einer sehr engen Tropfengrößenverteilung oder sogar monodispersen Tropfen könnte die Effizienz des Probeneintrags verbessern. Ein Ziel dieser Arbeit ist daher, Tropfen, die mittels des thermischen Tintenstrahldruckverfahrens erzeugt werden, zum Probeneintrag in der Elementmassenspektrometrie einzusetzen. Das thermische Tintenstrahldruckverfahren konnte in der analytischen Chemie im Bereich der Oberflächenanalytik mittels TXRF oder Laserablation bisher zur gezielten, reproduzierbaren Deposition von Tropfen auf Oberflächen eingesetzt werden. Um eine kontinuierliche Tropfenerzeugung zu ermöglichen, wurde ein elektronischer Mikrokontroller entwickelt, der eine Dosiereinheit unabhängig von der Hard- und Software des Druckers steuern kann. Dabei sind alle zur Tropfenerzeugung relevanten Parameter (Frequenz, Heizpulsenergie) unabhängig voneinander einstellbar. Die Dosiereinheit, der "drop-on-demand" Aerosolgenerator (DOD), wurde auf eine Aerosoltransportkammer montiert, welche die erzeugten Tropfen in die Ionisationsquelle befördert. Im Bereich der anorganischen Spurenanalytik konnten durch die Kombination des DOD mit einem automatischen Probengeber 53 Elemente untersucht und die erzielbare Empfindlichkeiten sowie exemplarisch für 15 Elemente die Nachweisgrenzen und die Untergrundäquivalentkonzentrationen ermittelt werden. Damit die Vorteile komfortabel genutzt werden können, wurde eine Kopplung des DOD-Systems mit der miniaturisierten Fließinjektionsanalyse (FIA) sowie miniaturisierten Trenntechniken wie der µHPLC entwickelt. Die Fließinjektionsmethode wurde mit einem zertifizierten Referenzmaterial validiert, wobei für Vanadium und Cadmium die zertifizierten Werte gut reproduziert werden konnten. Transiente Signale konnten bei der Kopplung des Dosiersystems in Verbindung mit der ICP-MS an eine µHPLC abgebildet werden. Die Modifikation der Dosiereinheit zum Ankoppeln an einen kontinuierlichen Probenfluss bedarf noch einer weiteren Reduzierung des verbleibenden Totvolumens. Dazu ist die Unabhängigkeit von den bisher verwendeten, kommerziell erhältlichen Druckerpatronen anzustreben, indem die Dosiereinheit selbst gefertigt wird. Die Vielseitigkeit des Dosiersystems wurde mit der Kopplung an eine kürzlich neu entwickelte Atmosphärendruck-Ionisationsmethode, die "flowing atmospheric-pressure afterglow" Desorptions/Ionisations Ionenquelle (FAPA), aufgezeigt. Ein direkter Eintrag von flüssigen Proben in diese Quelle war bislang nicht möglich, es konnte lediglich eine Desorption von eingetrockneten Rückständen oder direkt von der Flüssigkeitsoberfläche erfolgen. Die Präzision der Analyse ist dabei durch die variable Probenposition eingeschränkt. Mit dem Einsatz des DOD-Systems können flüssige Proben nun direkt in die FAPA eingetragen, was ebenfalls das Kalibrieren bei quantitativen Analysen organischer Verbindungen ermöglicht. Neben illegalen Drogen und deren Metaboliten konnten auch frei verkäufliche Medikamente und ein Sprengstoffanalogon in entsprechend präpariertem reinem Lösungsmittel nachgewiesen werden. Ebenso gelang dies in Urinproben, die mit Drogen und Drogenmetaboliten versetzt wurden. Dabei ist hervorzuheben, dass keinerlei Probenvorbereitung notwendig war und zur Ermittlung der NWG der einzelnen Spezies keine interne oder isotopenmarkierte Standards verwendet wurden. Dennoch sind die ermittelten NWG deutlich niedriger, als die mit der bisherigen Prozedur zur Analyse flüssiger Proben erreichbaren. Um im Vergleich zu der bisher verwendeten "pin-to-plate" Geometrie der FAPA die Lösungsmittelverdampfung zu beschleunigen, wurde eine alternative Elektrodenanordnung entwickelt, bei der die Probe länger in Kontakt mit der "afterglow"-Zone steht. Diese Glimmentladungsquelle ist ringförmig und erlaubt einen Probeneintrag mittels eines zentralen Gasflusses. Wegen der ringförmigen Entladung wird der Name "halo-FAPA" (h-FAPA) für diese Entladungsgeometrie verwendet. Eine grundlegende physikalische und spektroskopische Charakterisierung zeigte, dass es sich tatsächlich um eine FAPA Desorptions/Ionisationsquelle handelt.
Resumo:
Atmosphärische Partikel beeinflussen das Klima durch Prozesse wie Streuung, Reflexion und Absorption. Zusätzlich fungiert ein Teil der Aerosolpartikel als Wolkenkondensationskeime (CCN), die sich auf die optischen Eigenschaften sowie die Rückstreukraft der Wolken und folglich den Strahlungshaushalt auswirken. Ob ein Aerosolpartikel Eigenschaften eines Wolkenkondensationskeims aufweist, ist vor allem von der Partikelgröße sowie der chemischen Zusammensetzung abhängig. Daher wurde die Methode der Einzelpartikel-Laserablations-Massenspektrometrie angewandt, die eine größenaufgelöste chemische Analyse von Einzelpartikeln erlaubt und zum Verständnis der ablaufenden multiphasenchemischen Prozesse innerhalb der Wolke beitragen soll.rnIm Rahmen dieser Arbeit wurde zur Charakterisierung von atmosphärischem Aerosol sowie von Wolkenresidualpartikel das Einzelpartikel-Massenspektrometer ALABAMA (Aircraft-based Laser Ablation Aerosol Mass Spectrometer) verwendet. Zusätzlich wurde zur Analyse der Partikelgröße sowie der Anzahlkonzentration ein optischer Partikelzähler betrieben. rnZur Bestimmung einer geeigneten Auswertemethode, die die Einzelpartikelmassenspektren automatisch in Gruppen ähnlich aussehender Spektren sortieren soll, wurden die beiden Algorithmen k-means und fuzzy c-means auf ihrer Richtigkeit überprüft. Es stellte sich heraus, dass beide Algorithmen keine fehlerfreien Ergebnisse lieferten, was u.a. von den Startbedingungen abhängig ist. Der fuzzy c-means lieferte jedoch zuverlässigere Ergebnisse. Darüber hinaus wurden die Massenspektren anhand auftretender charakteristischer chemischer Merkmale (Nitrat, Sulfat, Metalle) analysiert.rnIm Herbst 2010 fand die Feldkampagne HCCT (Hill Cap Cloud Thuringia) im Thüringer Wald statt, bei der die Veränderung von Aerosolpartikeln beim Passieren einer orographischen Wolke sowie ablaufende Prozesse innerhalb der Wolke untersucht wurden. Ein Vergleich der chemischen Zusammensetzung von Hintergrundaerosol und Wolkenresidualpartikeln zeigte, dass die relativen Anteile von Massenspektren der Partikeltypen Ruß und Amine für Wolkenresidualpartikel erhöht waren. Dies lässt sich durch eine gute CCN-Aktivität der intern gemischten Rußpartikel mit Nitrat und Sulfat bzw. auf einen begünstigten Übergang der Aminverbindungen aus der Gas- in die Partikelphase bei hohen relativen Luftfeuchten und tiefen Temperaturen erklären. Darüber hinaus stellte sich heraus, dass bereits mehr als 99% der Partikel des Hintergrundaerosols intern mit Nitrat und/oder Sulfat gemischt waren. Eine detaillierte Analyse des Mischungszustands der Aerosolpartikel zeigte, dass sich sowohl der Nitratgehalt als auch der Sulfatgehalt der Partikel beim Passieren der Wolke erhöhte. rn
Resumo:
Die Erdatmosphäre besteht hauptsächlich aus Stickstoff (78%), Sauerstoff (21%) und Edelga¬sen. Obwohl Partikel weniger als 0,1% ausmachen, spielen sie eine entscheidende Rolle in der Chemie und Physik der Atmosphäre, da sie das Klima der Erde sowohl direkt als auch indirekt beeinflussen. Je nach Art der Bildung unterscheidet man zwischen primären und sekundären Partikeln, wobei primäre Partikel direkt in die Atmosphäre eingetragen werden. Sekundäre Partikel hingegen entstehen durch Kondensation von schwerflüchtigen Verbindungen aus der Gasphase, welche durch Reaktionen von gasförmigen Vorläufersubstanzen (volatile organic compounds, VOCs) mit atmosphärischen Oxidantien wie Ozon oder OH-Radikalen gebildet werden. Da die meisten Vorläufersubstanzen organischer Natur sind, wird das daraus gebil¬dete Aerosol als sekundäres organisches Aerosol (SOA) bezeichnet. Anders als die meisten primären Partikel stammen die VOCs überwiegend aus biogenen Quellen. Es handelt sich da¬bei um ungesättigte Kohlenwasserstoffe, die bei intensiver Sonneneinstrahlung und hohen Temperaturen von Pflanzen emittiert werden. Viele der leichtflüchtigen Vorläufersubstanzen sind chiral, sowohl die Vorläufer als auch die daraus gebildeten Partikel werden aber in den meisten Studien als eine Verbindung betrachtet und gemeinsam analysiert. Die mit Modellen berechneten SOA-Konzentrationen, welche auf dieser traditionellen Vorstellung der SOA-Bil¬dung beruhen, liegen deutlich unterhalb der in der Atmosphäre gefundenen, so dass neben diesem Bildungsweg auch noch andere SOA-Bildungsarten existieren müssen. Aus diesem Grund wird der Fokus der heutigen Forschung vermehrt auf die heterogene Chemie in der Partikelphase gerichtet. Glyoxal als Modellsubstanz kommt hierbei eine wichtige Rolle zu. Es handelt sich bei dieser Verbindung um ein Molekül mit einem hohen Dampfdruck, das auf Grund dieser Eigenschaft nur in der Gasphase zu finden sein sollte. Da es aber über zwei Alde¬hydgruppen verfügt, ist es sehr gut wasserlöslich und kann dadurch in die Partikelphase über¬gehen, wo es heterogenen chemischen Prozessen unterliegt. Unter anderem werden in An¬wesenheit von Ammoniumionen Imidazole gebildet, welche wegen der beiden Stickstoff-He¬teroatome lichtabsorbierende Eigenschaften besitzen. Die Verteilung von Glyoxal zwischen der Gas- und der Partikelphase wird durch das Henrysche Gesetz beschrieben, wobei die Gleichgewichtskonstante die sogenannte Henry-Konstante ist. Diese ist abhängig von der un¬tersuchten organischen Verbindung und den im Partikel vorhandenen anorganischen Salzen. Für die Untersuchung chiraler Verbindungen im SOA wurde zunächst eine Filterextraktions¬methode entwickelt und die erhaltenen Proben anschließend mittels chiraler Hochleistungs-Flüssigchromatographie, welche an ein Elektrospray-Massenspektrometer gekoppelt war, analysiert. Der Fokus lag hierbei auf dem am häufigsten emittierten Monoterpen α-Pinen und seinem Hauptprodukt, der Pinsäure. Da bei der Ozonolyse des α-Pinens das cyclische Grund¬gerüst erhalten bleibt, können trotz der beiden im Molekül vorhanden chiralen Zentren nur zwei Pinsäure Enantiomere gebildet werden. Als Extraktionsmittel wurde eine Mischung aus Methanol/Wasser 9/1 gewählt, mit welcher Extraktionseffizienzen von 65% für Pinsäure Enan¬tiomer 1 und 68% für Pinsäure Enantiomer 2 erreicht werden konnten. Des Weiteren wurden Experimente in einer Atmosphärensimulationskammer durchgeführt, um die Produkte der α-Pinen Ozonolyse eindeutig zu charakterisieren. Enantiomer 1 wurde demnach aus (+)-α-Pinen gebildet und Enantiomer 2 entstand aus (-)-α-Pinen. Auf Filterproben aus dem brasilianischen Regenwald konnte ausschließlich Pinsäure Enantiomer 2 gefunden werden. Enantiomer 1 lag dauerhaft unterhalb der Nachweisgrenze von 18,27 ng/mL. Im borealen Nadelwald war das Verhältnis umgekehrt und Pinsäure Enantiomer 1 überwog vor Pinsäure Enantiomer 2. Das Verhältnis betrug 56% Enantiomer 1 zu 44% Enantiomer 2. Saisonale Verläufe im tropischen Regenwald zeigten, dass die Konzentrationen zur Trockenzeit im August höher waren als wäh¬rend der Regenzeit im Februar. Auch im borealen Nadelwald wurden im Sommer höhere Kon¬zentrationen gemessen als im Winter. Die Verhältnisse der Enantiomere änderten sich nicht im jahreszeitlichen Verlauf. Die Bestimmung der Henry-Konstanten von Glyoxal bei verschiedenen Saataerosolen, nämlich Ammoniumsulfat, Natriumnitrat, Kaliumsulfat, Natriumchlorid und Ammoniumnitrat sowie die irreversible Produktbildung aus Glyoxal in Anwesenheit von Ammoniak waren Forschungs¬gegenstand einer Atmosphärensimulationskammer-Kampagne am Paul-Scherrer-Institut in Villigen, Schweiz. Hierzu wurde zunächst das zu untersuchende Saataerosol in der Kammer vorgelegt und dann aus photochemisch erzeugten OH-Radikalen und Acetylen Glyoxal er¬zeugt. Für die Bestimmung der Glyoxalkonzentration im Kammeraerosol wurde zunächst eine beste¬hende Filterextraktionsmethode modifiziert und die Analyse mittels hochauflösender Mas¬senspektrometrie realisiert. Als Extraktionsmittel kam 100% Acetonitril, ACN zum Einsatz wo¬bei die Extraktionseffizienz bei 85% lag. Für die anschließende Derivatisierung wurde 2,4-Di¬nitrophenylhydrazin, DNPH verwendet. Dieses musste zuvor drei Mal mittels Festphasenex¬traktion gereinigt werden um störende Blindwerte ausreichend zu minimieren. Die gefunde¬nen Henry-Konstanten für Ammoniumsulfat als Saataerosol stimmten gut mit in der Literatur gefundenen Werten überein. Die Werte für Natriumnitrat und Natriumchlorid als Saataerosol waren kleiner als die von Ammoniumsulfat aber größer als der Wert von reinem Wasser. Für Ammoniumnitrat und Kaliumsulfat konnten keine Konstanten berechnet werden. Alle drei Saataerosole führten zu einem „Salting-in“. Das bedeutet, dass bei Erhöhung der Salzmolalität auch die Glyoxalkonzentration im Partikel stieg. Diese Beobachtungen sind auch in der Litera¬tur beschrieben, wobei die Ergebnisse dort nicht auf der Durchführung von Kammerexperi¬menten beruhen, sondern mittels bulk-Experimenten generiert wurden. Für die Trennung der Imidazole wurde eine neue Filterextraktionsmethode entwickelt, wobei sich ein Gemisch aus mit HCl angesäuertem ACN/H2O im Verhältnis 9/1 als optimales Extrak¬tionsmittel herausstellte. Drei verschiedenen Imidazole konnten mit dieser Methode quanti¬fiziert werden, nämlich 1-H-Imidazol-4-carbaldehyd (IC), Imidazol (IM) und 2,2‘-Biimidazol (BI). Die Effizienzen lagen für BI bei 95%, für IC bei 58% und für IM bei 75%. Kammerexperimente unter Zugabe von Ammoniak zeigten höhere Imidazolkonzentrationen als solche ohne. Wurden die Experimente ohne Ammoniak in Anwesenheit von Ammoni¬umsulfat durchgeführt, wurden höhere Imidazol-Konzentrationen gefunden als ohne Ammo¬niumionen. Auch die relative Luftfeuchtigkeit spielte eine wichtige Rolle, da sowohl eine zu hohe als auch eine zu niedrige relative Luftfeuchtigkeit zu einer verminderten Imidazolbildung führte. Durch mit 13C-markiertem Kohlenstoff durchgeführte Experimente konnte eindeutig gezeigt werden, dass es sich bei den gebildeten Imidazolen und Glyoxalprodukte handelte. Außerdem konnte der in der Literatur beschriebene Bildungsmechanismus erfolgreich weiter¬entwickelt werden. Während der CYPHEX Kampagne in Zypern konnten erstmalig Imidazole in Feldproben nach¬gewiesen werden. Das Hauptprodukt IC zeigte einen tageszeitlichen Verlauf mit höheren Kon¬zentrationen während der Nacht und korrelierte signifikant aber schwach mit der Acidität und Ammoniumionenkonzentration des gefundenen Aerosols.
Resumo:
Der atmosphärische Kreislauf reaktiver Stickstoffverbindungen beschäftigt sowohl die Naturwissenschaftler als auch die Politik. Dies ist insbesondere darauf zurückzuführen, dass reaktive Stickoxide die Bildung von bodennahem Ozon kontrollieren. Reaktive Stickstoffverbindungen spielen darüber hinaus als gasförmige Vorläufer von Feinstaubpartikeln eine wichtige Rolle und der Transport von reaktivem Stickstoff über lange Distanzen verändert den biogeochemischen Kohlenstoffkreislauf des Planeten, indem er entlegene Ökosysteme mit Stickstoff düngt. Die Messungen von stabilen Stickstoffisotopenverhältnissen (15N/14N) bietet ein Hilfsmittel, welches es erlaubt, die Quellen von reaktiven Stickstoffverbindungen zu identifizieren und die am Stickstoffkeislauf beteiligten Reaktionen mithilfe ihrer reaktionsspezifischen Isotopenfraktionierung genauer zu untersuchen. rnIn dieser Doktorarbeit demonstriere ich, dass es möglich ist, mit Hilfe von Nano-Sekundärionenmassenspektrometrie (NanoSIMS) verschiedene stickstoffhaltige Verbindungen, die üblicherweise in atmosphärischen Feinstaubpartikeln vorkommen, mit einer räumlichen Auflösung von weniger als einem Mikrometer zu analysieren und zu identifizieren. Die Unterscheidung verschiedener stickstoffhaltiger Verbindungen erfolgt anhand der relativen Signalintensitäten der positiven und negativen Sekundärionensignale, die beobachtet werden, wenn die Feinstaubproben mit einem Cs+ oder O- Primärionenstrahl beschossen werden. Die Feinstaubproben können direkt auf dem Probenahmesubstrat in das Massenspektrometer eingeführt werden, ohne chemisch oder physikalisch aufbereited zu werden. Die Methode wurde Mithilfe von Nitrat, Nitrit, Ammoniumsulfat, Harnstoff, Aminosären, biologischen Feinstaubproben (Pilzsporen) und Imidazol getestet. Ich habe gezeigt, dass NO2 Sekundärionen nur beim Beschuss von Nitrat und Nitrit (Salzen) mit positiven Primärionen entstehen, während NH4+ Sekundärionen nur beim Beschuss von Aminosäuren, Harnstoff und Ammoniumsalzen mit positiven Primärionen freigesetzt werden, nicht aber beim Beschuss biologischer Proben wie z.B. Pilzsporen. CN- Sekundärionen werden beim Beschuss aller stickstoffhaltigen Verbindungen mit positiven Primärionen beobachtet, da fast alle Proben oberflächennah mit Kohlenstoffspuren kontaminiert sind. Die relative Signalintensität der CN- Sekundärionen ist bei kohlenstoffhaltigen organischen Stickstoffverbindungen am höchsten.rnDarüber hinaus habe ich gezeigt, dass an reinen Nitratsalzproben (NaNO3 und KNO3), welche auf Goldfolien aufgebracht wurden speziesspezifische stabile Stickstoffisotopenverhältnisse mithilfe des 15N16O2- / 14N16O2- - Sekundärionenverhältnisses genau und richtig gemessen werden können. Die Messgenauigkeit auf Feldern mit einer Rastergröße von 5×5 µm2 wurde anhand von Langzeitmessungen an einem hausinternen NaNO3 Standard als ± 0.6 ‰ bestimmt. Die Differenz der matrixspezifischen instrumentellen Massenfraktionierung zwischen NaNO3 und KNO3 betrug 7.1 ± 0.9 ‰. 23Na12C2- Sekundärionen können eine ernst zu nehmende Interferenz darstellen wenn 15N16O2- Sekundärionen zur Messung des nitratspezifischen schweren Stickstoffs eingesetzt werden sollen und Natrium und Kohlenstoff im selben Feinstaubpartikel als interne Mischung vorliegt oder die natriumhaltige Probe auf einem kohlenstoffhaltigen Substrat abgelegt wurde. Selbst wenn, wie im Fall von KNO3, keine derartige Interferenz vorliegt, führt eine interne Mischung mit Kohlenstoff im selben Feinstaubpartikel zu einer matrixspezifischen instrumentellen Massenfraktionierung die mit der folgenden Gleichung beschrieben werden kann: 15Nbias = (101 ± 4) ∙ f − (101 ± 3) ‰, mit f = 14N16O2- / (14N16O2- + 12C14N-). rnWird das 12C15N- / 12C14N- Sekundärionenverhältnis zur Messung der stabilen Stickstoffisotopenzusammensetzung verwendet, beeinflusst die Probematrix die Messungsergebnisse nicht, auch wenn Stickstoff und Kohlenstoff in den Feinstaubpartikeln in variablen N/C–Verhältnissen vorliegen. Auch Interferenzen spielen keine Rolle. Um sicherzustellen, dass die Messung weiterhin spezifisch auf Nitratspezies eingeschränkt bleibt, kann eine 14N16O2- Maske bei der Datenauswertung verwendet werden. Werden die Proben auf einem kohlenstoffhaltigen, stickstofffreien Probennahmesubstrat gesammelt, erhöht dies die Signalintensität für reine Nitrat-Feinstaubpartikel.