823 resultados para Adaptive object model
Resumo:
Limited energy is a big challenge for large scale wireless sensor networks (WSN). Previous research works show that modulation scaling is an efficient technique to reduce energy consumption. However, the impacts of using modulation scaling on packet delivery latency and loss are not considered, which may have adverse effects on the application qualities. In this paper, we study this problem and propose control schemes to minimize energy consumption while ensuring application qualities. We first analyze the relationships of modulation scaling and energy consumption, end-to-end delivery latency and packet loss ratio. With the analytical model, we develop a centralized control scheme to adaptively adjust the modulation levels, in order to minimize energy consumption and ensure the application qualities. To improve the scalability of the centralized control scheme, we also propose a distributed control scheme. In this scheme, the sink will send the differences between the required and measured application qualities to the sensors. The sensors will update their modulation levels with the local information and feedback from the sink. Experimental results show the effectiveness of energy saving and QoS guarantee of the control schemes. The control schemes can adapt efficiently to the time-varying requirements on application qualities. Copyright © 2005 The Institute of Electronics, Information and Communication Engineers.
Resumo:
Energy consumption has been a key concern of data gathering in wireless sensor networks. Previous research works show that modulation scaling is an efficient technique to reduce energy consumption. However, such technique will also impact on both packet delivery latency and packet loss, therefore, may result in adverse effects on the qualities of applications. In this paper, we study the problem of modulation scaling and energy-optimization. A mathematical model is proposed to analyze the impact of modulation scaling on the overall energy consumption, end-to-end mean delivery latency and mean packet loss rate. A centralized optimal management mechanism is developed based on the model, which adaptively adjusts the modulation levels to minimize energy consumption while ensuring the QoS for data gathering. Experimental results show that the management mechanism saves significant energy in all the investigated scenarios. Some valuable results are also observed in the experiments. © 2004 IEEE.
Conceptual Model and Security Requirements for DRM Techniques Used for e-Learning Objects Protection
Resumo:
This paper deals with the security problems of DRM protected e-learning content. After a short review of the main DRM systems and methods used in e-learning, an examination is made of participators in DRM schemes (e-learning object author, content creator, content publisher, license creator and end user). Then a conceptual model of security related processes of DRM implementation is proposed which is improved afterwards to reflect some particularities in DRM protection of e-learning objects. A methodical way is used to describe the security related motives, responsibilities and goals of the main participators involved in the DRM system. Taken together with the process model, these security properties are used to establish a list of requirements to fulfill and a possibility for formal verification of real DRM systems compliance with these requirements.
Resumo:
The article reveals a new technological approach to the creation of adaptive systems of distance learning and knowledge control. The use of the given technology helps to automate the learning process with the help of adaptive system. Developed with the help of the quantum approach of knowledge setting, a programming module-controller guarantees the support of students’ attention and the adaptation of the object language, and this helps to provide the effective interaction between learners and the learning system and to reach good results in the intensification of learning process.
Resumo:
The operating model of knowledge quantum engineering for identification and prognostic decision- making in conditions of α-indeterminacy is suggested in the article. The synthesized operating model solves three basic tasks: Аt-task to formalize tk-knowledge; Вt-task to recognize (identify) objects according to observed results; Сt-task to extrapolate (prognosticate) the observed results. Operating derivation of identification and prognostic decisions using authentic different-level algorithmic knowledge quantum (using tRAKZ-method) assumes synthesis of authentic knowledge quantum database (BtkZ) using induction operator as a system of implicative laws, and then using deduction operator according to the observed tk-knowledge and BtkZ a derivation of identification or prognostic decisions in a form of new tk-knowledge.
Resumo:
An approach for knowledge extraction from the information arriving to the knowledge base input and also new knowledge distribution over knowledge subsets already present in the knowledge base is developed. It is also necessary to realize the knowledge transform into parameters (data) of the model for the following decision-making on the given subset. It is assumed to realize the decision-making with the fuzzy sets’ apparatus.
Resumo:
A class of intelligent systems located on anthropocentric objects that provide a crew with recommendations on the anthropocentric object's rational behavior in typical situations of operation is considered. We refer to this class of intelligent systems as onboard real-time advisory expert systems. Here, we present a formal model of the object domain, procedures for obtaining knowledge about the object domain, and a semantic structure of basic functional units of the onboard real-time advisory expert systems of typical situations. The stages of the development and improvement of knowledge bases for onboard real-time advisory expert systems of typical situations that are important in practice are considered.
Resumo:
The problems and methods for adaptive control and multi-agent processing of information in global telecommunication and computer networks (TCN) are discussed. Criteria for controllability and communication ability (routing ability) of dataflows are described. Multi-agent model for exchange of divided information resources in global TCN has been suggested. Peculiarities for adaptive and intelligent control of dataflows in uncertain conditions and network collisions are analyzed.
Resumo:
Structural monitoring and dynamic identification of the manmade and natural hazard objects is under consideration. Math model of testing object by set of weak stationary dynamic actions is offered. The response of structures to the set of signals is under processing for getting important information about object condition in high frequency band. Making decision procedure into active monitoring system is discussed as well. As an example the monitoring outcome of pillar-type monument is given.
Resumo:
In order to exploit the adaptability of a SOA infrastructure, it becomes necessary to provide platform mechanisms that support a mapping of the variability in the applications to the variability provided by the infrastructure. The approach focuses on the configuration of the needed infrastructure mechanisms including support for the derivation of the infrastructure variability model.
Resumo:
В статье описываются вопросы интеграции системы моделирования пользователя и адаптивной обучающей системы. Основу адаптивной обучающей системы составляет технология LOM, реализующая управление обучающими объектами и поддержанная инструментом VITA-II. Ключевой компонентой процесса адаптации является модель обучающегося. Построение модели производится при помощи инструмента моделирования пользователя Trivium. Задача заключается в интеграции двух средств поддержания адаптивного дистанционного обучения. Кратко рассматриваются архитектуры инструментов VITA-II и Trivium. Рассматривается схема их взаимодействия и возможности интеграции.
Resumo:
In the article, we have reviewed the means for visualization of syntax, semantics and source code for programming languages which support procedural and/or object-oriented paradigm. It is examined how the structure of the source code of the structural and object-oriented programming styles has influenced different approaches for their teaching. We maintain a thesis valid for the object-oriented programming paradigm, which claims that the activities for design and programming of classes are done by the same specialist, and the training of this specialist should include design as well as programming skills and knowledge for modeling of abstract data structures. We put the question how a high level of abstraction in the object-oriented paradigm should be presented in simple model in the design stage, so the complexity in the programming stage stay low and be easily learnable. We give answer to this question, by building models using the UML notation, as we take a concrete example from the teaching practice including programming techniques for inheritance and polymorphism.
Resumo:
Adaptive critic methods have common roots as generalizations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, nonlinear and nonstationary environments. In this study, a novel probabilistic dual heuristic programming (DHP) based adaptive critic controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) adaptive critic method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterized by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the critic network is then calculated and shown to be equal to the analytically derived correct value.
Resumo:
This paper analyzes difficulties with the introduction of object-oriented concepts in introductory computing education and then proposes a two-language, two-paradigm curriculum model that alleviates such difficulties. Our two-language, two-paradigm curriculum model begins with teaching imperative programming using Python programming language, continues with teaching object-oriented computing using Java, and concludes with teaching object-oriented data structures with Java.
Resumo:
ACM Computing Classification System (1998): K.3.1, K.3.2.