990 resultados para AUTOSOMAL-RECESSIVE DEAFNESS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Educação Especial (área de especialização em Dificuldades de Aprendizagem Específicas)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A perda auditiva por exposição ao ruído é um problema de saúde ocupacional, não reconhecido nas escolas de música. Em Portugal, a legislação relativa a ruído ocupacional não possui indicações específicas para músicos, existindo apenas um código de conduta europeu, proveniente da Diretiva 2003/10/CE que estabelece as orientações gerais relativas a como devem ser protegidos do ruído músicos e trabalhadores de setores de entretenimento. Avaliou-se o nível sonoro contínuo equivalente (LAeq), individualmente no decorrer das atividades letivas, o que permitiu determinar o nível exposição pessoal diária ao ruído (Lex,8h) de 20 docentes de música. Paralelamente, os docentes preencheram um questionário relativo a fatores intrínsecos e individuais e todos efetuaram audiogramas tonais simples. Os dados recolhidos foram estatisticamente tratados através do programa Statistical Package for Social Sciences (SPSS) versão 21. Existem atividades letivas que implicam níveis de exposição pessoal diária ao ruído superiores ao nível de ação inferior (25%), pelo que se devem adotar medidas para sensibilizar e alertar os docentes para a adoção de medidas de proteção. A atividade dos docentes expostos a níveis de exposição pessoal diária mais elevados correspondeu a aulas de grupo e a aulas individuais, com utilização de instrumentos musicais direcionais. A manifestação de sintomatologia relevante relativa a perda auditiva (audição de zumbidos, dificuldades de perceção do diálogo e dificuldade em adormecer) e a evolução da surdez profissional, não parecem estar diretamente relacionadas com os níveis de exposição pessoal diária ao ruído nem atividades com exposição ao ruído desenvolvidas nos tempos livres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Familial hypercholesterolemia (FH) is an autosomal dominant genetic disease characterized by an elevation in the serum levels of total cholesterol and of low-density lipoproteins (LDL- c). Known to be closely related to the atherosclerotic process, FH can determine the development of early obstructive lesions in different arterial beds. In this context, FH has also been proposed to be a risk factor for peripheral arterial disease (PAD). Objective: This observational cross-sectional study assessed the association of PAD with other manifestations of cardiovascular disease (CVD), such as coronary artery and cerebrovascular disease, in patients with heterozygous FH. Methods: The diagnosis of PAD was established by ankle-brachial index (ABI) values ≤ 0.90. This study assessed 202 patients (35% of men) with heterozygous FH (90.6% with LDL receptor mutations), mean age of 51 ± 14 years and total cholesterol levels of 342 ± 86 mg /dL. Results: The prevalences of PAD and previous CVD were 17% and 28.2 %, respectively. On multivariate analysis, an independent association between CVD and the diagnosis of PAD was observed (OR = 2.50; 95% CI: 1.004 - 6.230; p = 0.049). Conclusion: Systematic screening for PAD by use of ABI is feasible to assess patients with FH, and it might indicate an increased risk for CVD. However, further studies are required to determine the role of ABI as a tool to assess the cardiovascular risk of those patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1) The first part deals with the different processes which may complicate Mendelian segregation and which may be classified into three groups, according to BRIEGER (1937b) : a) Instability of genes, b) Abnormal segregation due to distur- bances during the meiotic divisions, c) obscured segregation, after a perfectly normal meiosis, caused by elimination or during the gonophase (gametophyte in higher plants), or during zygophase (sporophyte). Without entering into detail, it is emphasized that all the above mentioned complications in the segregation of some genes may be caused by the action of other genes. Thus in maize, the instability of the Al factor is observed only when the gene dt is presente in the homozygous conditions (RHOADES 1938). In another case, still under observation in Piracicaba, an instability is observed in Mirabilis with regard to two pairs of alleles both controlling flower color. Several cases are known, especially in corn, where recessive genes, when homozigous, affect the course of meiosis, causing asynapsis (asyndesis) (BEADLE AND MC CLINTOCK 1928, BEADLE 1930), sticky chromosomes (BEADLE 1932), supermunmerary divisions (BEADLE 1931). The most extreme case of an obscured segregatiou is represented by the action of the S factors in self stetrile plants. An additional proof of EAST AND MANGELSDORF (1925) genetic formula of self sterility has been contributed by the studies on Jinked factors in Nicotina (BRIEGER AND MANGELSDORF (1926) and Antirrhinum (BRIEGER 1930, 1935), In cases of a incomplete competition and selection between pollen tubes, studies of linked indicator-genes are indispensable in the genetic analysis, since it is impossible to analyse the factors for gametophyte competition by direct aproach. 2) The flower structure of corn is explained, and stated that the particularites of floral biology make maize an excellent object for the study of gametophyte factors. Since only one pollen tube per ovule may accomplish fertilization, the competition is always extremely strong, as compared with other species possessing multi-ovulate ovaries. The lenght of the silk permitts the study of pollen tube competitions over a varying distance. Finally the genetic analysis of grains characters (endosperm and aleoron) simpliflen the experimental work considerably, by allowing the accumulation of large numbers for statistical treatment. 3) The four methods for analyzing the naturing of pollen tube competition are discussed, following BRIEGER (1930). Of these the first three are: a) polinization with a small number of pollen grains, b) polinization at different times and c) cut- ting the style after the faster tubes have passe dand before the slower tubes have reached the point where the stigma will be cut. d) The fourth method, alteration of the distatice over which competition takes place, has been applied largely in corn. The basic conceptions underlying this process, are illustrated in Fig. 3. While BRINK (1925) and MANGELSDORF (1929) applied pollen at different levels on the silks, the remaining authors (JONES, 1922, MANGELSDORF 1929, BRIEGER, at al. 1938) have used a different process. The pollen was applied as usual, after removing the main part of the silks, but the ears were divided transversally into halves or quarters before counting. The experiments showed generally an increase in the intensity of competition when there was increase of the distance over which they had to travel. Only MANGELSDORF found an interesting exception. When the distance became extreme, the initially slower tubes seemed to become finally the faster ones. 4) Methods of genetic and statistical analysis are discussed, following chiefly BRIEGER (1937a and 1937b). A formula is given to determine the intensity of ellimination in three point experiments. 5) The few facts are cited which give some indication about the physiological mechanism of gametophyte competition. They are four in number a) the growth rate depends-only on the action of gametophyte factors; b) there is an interaction between the conductive tissue of the stigma or style and the pollen tubes, mainly in self-sterile plants; c) after self-pollination necrosis starts in the tissue of the stigma, in some orchids after F. MÜLLER (1867); d) in pollon mixtures there is an inhibitory interaction between two types of pollen and the female tissue; Gossypium according to BALLS (1911), KEARNEY 1923, 1928, KEARNEY AND HARRISON (1924). A more complete discussion is found in BRIEGER 1930). 6) A list of the gametophyte factors so far localized in corn is given. CHROMOSOME IV Ga 1 : MANGELSDORF AND JONES (1925), EMERSON 1934). Ga 4 : BRIEGER (1945b). Sp 1 : MANGELSDORF (1931), SINGLETON AND MANGELSDORF (1940), BRIEGER (1945a). CHROMOSOME V Ga 2 : BRIEGER (1937a). CHROMOSOME VI BRIEGER, TIDBURY AND TSENG (1938) found indications of a gametophyte factor altering the segregation of yellow endosperm y1. CHROMOSOME IX Ga 3 : BRIEGER, TIDBURY AND TSENG (1938). While the competition in these six cases is essentially determined by one pair of factors, the degree of elimination may be variable, as shown for Ga2 (BRIEGER, 1937), for Ga4 (BRIEGER 1945a) and for Spl (SINGLETON AND MANGELSDORF 1940, BRIEGER 1945b). The action of a gametophyte factor altering the segregation of waxy (perhaps Ga3) is increased by the presence of the sul factor which thus acts as a modifier (BRINCK AND BURNHAM 1927). A polyfactorial case of gametophyte competition has been found by JONES (1922) and analysed by DEMEREC (1929) in rice pop corn which rejects the pollen tubes of other types of corn. Preference for selfing or for brothers-sister mating and partial elimination of other pollen tubes has been described by BRIEGER (1936). 7) HARLAND'S (1943) very ingenious idea is discussed to use pollen tube factors in applied genetics in order to build up an obstacle to natural crossing as a consequence of the rapid pollen tube growth after selfing. Unfortunately, HARLAND could not obtain the experimental proof of the praticability of his idea, during his experiments on selection for minor modifiers for pollen tube grouth in cotton. In maize it should be possible to employ gametophyte factors to build up lines with preference for crossing, though the method should hardly be of any practical advantage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper an account is given of the principal facts observer in the meiosis of Euryophthalmus rufipennis Laporte which afford some evidence in favour of the view held by the present writer in earlier publications regarding the existence of two terminal kinetochores in Hem ip ter an chromosomes as well as the transverse division of the chromosomes. Spermatogonial mitosis - From the beginning of prophase until metaphase nothing worthy of special reference was observed. At anaphase, on the contrary, the behavior of the chromosomes deserves our best attention. Indeed, the chromoso- mes, as soon as they begin to move, they show both ends pronouncedly turned toward the poles to which they are connected by chromosomal fibres. So a premature and remarkable bending of the chromosomes not yet found in any other species of Hemiptera and even of Homoptera points strongly to terminally localized kinetochores. The explanation proposed by HUGHES-SCHRADER and RIS for Nautococcus and by RIS for Tamalia, whose chromosomes first become bent late in anaphase do not apply to chromosomes which initiate anaphase movement already turned toward the corresponding pole. In the other hand, the variety of positions assumed by the anaphase chromosomes of Euryophthalmus with regard to one another speaks conclusively against the idea of diffuse spindle attachments. First meiotic division - Corresponding to the beginning of the story of the primary spermatocytes cells are found with the nucleus entirelly filled with leptonema threads. Nuclei with thin and thick threads have been considered as being in the zygotente phase. At the pachytene stage the bivalents are formed by two parallel strands clearly separated by a narrow space. The preceding phases differ in nothing from the corresponding orthodox ones, pairing being undoubtedly of the parasynaptic type. Formation of tetrads - When the nuclei coming from the diffuse stage can be again understood the chromosomes reappear as thick threads formed by two filaments intimately united except for a short median segment. Becoming progressively shorter and thicker the bivalents sometimes unite their extremities forming ring-shaped figures. Generally, however, this does not happen and the bivalents give origin to more or less condensed characteristic Hemipteran tetrads, bent at the weak median region. The lateral duplicity of the tetrads is evident. At metaphase the tetrads are still bent and are connected with both poles by their ends. The ring-shaped diakinesis tetrads open themselves out before metaphase, showing in this way that were not chiasmata that held their ends together. Anaphase proceeds as expected. If we consider the median region of the tetrads as being terminalized chiasmata, then the chromosomes are provided with a single terminal kinetochore. But this it not the case. A critical analysis of the story of the bivalents before and after the diffuse stage points to the conclusion that they are continuous throughout their whole length. Thence the chromosomes are considered as having a kinetochore at each end. Orientation - There are some evidences that Hemipteran chromosomes are connected by chiasmata. If this is true, the orientation of the tetrads may be understood in the following manner: Chiasmata being hindered to scape by the terminal kinetochores accumulate at the ends of the tetrads, where condensation begins. Repulsion at the centric ends being prevented by chiasmata the tetrads orient themselves as if they were provided with a single kinetochore at each extremity, taking a position parallelly to the spindle axis. Anaphase separation - Anaphase separation is consequently due to a transverse division of the chromosomes. Telophase and secund meiotic division - At telophase the kinetochore repeli one another following the moving apart of the centosomes, the chiasmata slip toward the acentric extremities and the chromosomes rotate in order to arrange themselves parallelly to the axis of the new spindle. Separation is therefore throughout the pairing plane. Origin of the dicentricity of the chromosomes - Dicentricity of the chromosomes is ascribed to the division of the kinetochore of the chromosomes reaching the poles followed by separation and distension of the chromatids which remain fused at the acentric ends giving thus origin to terminally dicentric iso-chromosomes. Thence, the transverse division of the chromosomes, that is, a division through a plane perpendicular to the plane of pairing, actually corresponds to a longitudinal division realized in the preceding generation. Inactive and active kinetochores - Chromosomes carrying inactive kinetochore is not capable of orientation and active anaphasic movements. The heterochromosome of Diactor bilineatus in the division of the secondary spermatocytes is justly in this case, standing without fibrilar connection with the poles anywhere in the cell, while the autosomes are moving regularly. The heterochromosome of Euryophthalmus, on the contrary, having its kinetochores perfectly active ,is correctly oriented in the plane of the equator together with the autosomes and shows terminal chromosomal connection with both poles. Being attracted with equal strength by two opposite poles it cannot decide to the one way or the other remaining motionless in the equator until some secondary causes (as for instances a slight functional difference between the kinetochores) intervene to break the state of equilibrium. When Yiothing interferes to aide the heterochromosome in choosing its way it distends itself between the autosomal plates forming a fusiform bridge which sometimes finishes by being broken. Ordinarily, however, the bulky part of the heterochromosome passes to one pole. Spindle fibers and kinetic activity of chromosomal fragments - The kinetochore is considered as the unique part of the chromosome capable of being influenced by other kinetochore or by the poles. Under such influence the kinetochore would be stimulated or activited and would elaborate a sort of impulse which would run toward the ends. In this respect the chromosome may be compared to a neüròn, the cell being represented by the kinetochore and the axon by the body of the chromosome. Due to the action of the kinetochore the entire chromosome becomes also activated for performing its kinetic function. Nothing is known at present about the nature of this activation. We can however assume that some active chemical substance like those produced by the neuron and transferred to the effector passes from the kinetochore to the body of the chromosome runing down to the ends. And, like an axon which continues to transmit an impulse after the stimulating agent has suspended its action, so may the chromosome show some residual kinetic activity even after having lost its kinetochore. This is another explanation for the kinetic behavior of acentric chromosomal fragmehs. In the orthodox monocentric chromosomes the kinetic activity is greater at the kinetochore, that is, at the place of origin of the active substance than at any other place. In chromosomes provided with a kinetochore at each end the entire body may become active enough to produce chromosomal fibers. This is probably due to a more or less uniform distribution and concentration of the active substance coming simultaneously from both extremities of the chromosome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spermatogonial chromosomes of Pachylis laticornis and Pachylis pharaonis begin anaphasic movement with both ends turned toward the same pole, maintaining this form util they reach the poles. This is a proof that they are provided with one kinetochore at each end. Additional proof for a longitudinal division of each longitudinal half of the anaphase chromosomes of the primary sper- matocytes is presented against the idea of a previous end-toend pairing at metaphase. The longitudinal split of the chromosomes of the secondary spermatocytes which used to be considered as tertiary split is therefore a true secondary split. The heterochromosome in both species passes undivided to one pole in the first division of the spermatocyte. In Pachylis laticornis it appears connected with the poles by means of two fibrils detached from each extremity, what may be considered as indicating a rather premature longitudinal spliting. The behavior of the heterochromosome of Pachylis pharaonis is highly interesting and affords one of the most beautiful evidences in favour of the dicentricity of the chromosomes. Really, in metaphase the heterochromosome appears at the equator of the cell with a more or less round shape. In the beginning of anaphase it becomes fusiform. As anaphase proceeds it distends itself between the autosomal plates forming a long fusiform bridge or sends toward the plates a thick chromosomal thread. The bulky part of the heterochromosome as it passes to one side it reincorporates the substance of the thread in this side. The thread in the other side, which becomes generally thiner, is left with its kinetochore in the cell at this side. The heterochromosome therefore becomes terminally monocentric in the first division of the spermatocyte. Some figures, however, suggest that the heterochromossome from time to time may pass with both kinetochores to one of the cells, as ordinarily happens in the case of Pachylis laticornis. Summing up, other things apart the behavior of the heterochromosome in both species studied here puts out of doubt the question of the existence of two terminally located kinetochores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The male of Eneoptera surinamensis (Orthoptera-Eneopteridae) is provided with 9 chromosomes, that is, with 3 pairs of autosomes and 3 sex chromosomes. Spermatogonia. - The autosomes of the spermatogonia are of the same size and U-shaped. One of the sex chromosomes approximately equalling the autosomes in size is telocentric, while the other two are much larger and V-shaped. One of the latter is smaller than the other. The sex chromosomes as showed in Figs. 1 and 2 are designated by X, Yl and Y2, X being the larger V, Yl the smaller one and Y2 the rod-shaped. Primary spermatocytes. - Before the growth period of the spermatocytes all the three sex chromosomes are visible in a state of strong heteropycnosis. X is remarkable in this stage in having two long arms well separated by a wide commissural segment. (Figs. 4, 5 and 6). During the growth period Y2 disappears, while X and Yl remain in a condensed form until metaphase. These may be separated from one another or united in the most varied and irregular manner. (Fig. 7 to 12). In the latter case the segments in contact seem to be always different so that we cannot recognize any homology of parts in the sense os genetics. At diplotene Y2 reappears together with the autosomal tetrads. X and Yl may again be seen as separate or united elements. (Figs. 13 and 14). At later diakinesis and metaphase the three sex chromosomes are always independent from each other, Y2 being typically rod-shaped, X and Yl V-shaped, X being a little larger than Yl. (Fig. 15 to 18). At metaphase the three condensed tetrads go to the equatorial plane, while the sex chromosomes occupy any position at both sides of this plane. In almost all figures which could be perfectly analysed X appeared at one side of the autosomal plate an Yl together with Y2 far apart at the other side. (Figs. 16 and 18). Only a few exception have been found. (Figs. 17 and 19). At anaphase X goes in precession to one pole, Yl and Y2 to the other (Figs. 20 and 21). As it is suggested by the few figures in which a localization of the sex chromosomes different from the normal has been observed, the possibility of other types of segregation of these elements cannot be entirely precluded. But, if this does happen, the resulting gametes should be inviable or give inviable zygotes. Early in anaphase autosomes and sex chromosomes divide longitudinally, being maintained united only by the kinetochore. (Figs. 20 and 21). At metaphase the three sex chromosomes seem to show no special repulsion against each other, X being found in the proximity of Yl or Y2 indifferently. At anaphase, however, the evidences in hand point to a stronger repulsion between X on the one side and both Ys on the other, so that in spite of the mutual repulsion of the latter they finish by going to the same pole. Secondary spermatocytes. - At telophase of the primary spermatocytes all the chromosomes enter into distension without disappearing of view. A nuclear membrane is formed around the chromosomes. All the chromosomes excepting Y2 which has two arms, are four-branched. (Fig. 22). Soon the chromosomes enter again into contraction giving rise to the secondary metaphase plate. Secondary spermatocytes provided as expected with four and five chromosomes are abundantly found. (Figs. 23 and 24). In the former all chromosomes are X-shaped while in the latter there is one which is V-shaped. This is the rod- shaped Y2. In the anaphase of the spermatocytes with four chromosomes all the chromosomes are V-shaped, one of them (X) being much larger than the others. In those with five there is one rod-shaped chromosome (Y2). (Fig. 25), Spermatids. Two classes of spermatids are produced, one with X and other with Yl and Y2. All the autosomes as well as Y2 soon enter into solution, X remaining visible for long time in one class and Yl in the other. (Figs. 26 and 27). Since both are very alike at this stage, one cannot distinguish the two classes of spermatids. Somatic chromosomes in the famale. - In the follicular cells of the ovary 8 chromosomes were found, two of which are much larger than the rest. (Figs. 29 and 30). These are considered as being sex chromosomes. CONCLUSION: Eneoptera surinamensis has a new type of sex-determining mechanism, the male being X Yl Y2 and the female XX. The sex chromosomes segregate without entering into contact at metaphase or forming group. After a review of the other known cases of complex sex chromosome mechanism the author held that Eneoptera is the unique representative of a true determinate segregation of sex chromosomes. Y2 behaving as sex chromosome and as autosome is considered as representing an intermediary state of the evolution of the sex chromosomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main facts presented in this paper may be summarized as follows: 1) Corizus (Liorhyssus) hyalinus (Fabr.) has primary spermatocytes provided with 6 autosomal tetrads, one pair of microchromosomes and one sex chromosome. 2) The two microchromosomes present in this species sometimes appear at the primary metaphase as an unequal pair of minute elements. In the secondary spermatocytes the unique microchromosome present may be in the limit of visibility or entirely invisible. This invisibility may be partly due to a loss of colourability. 3) The sex chromosome divides transversely in the first division of the spermatocyte, passing undivided to one pole in the second one. In the latter it becomes fusiform in the beginning of anaphase revealing in this manner its dicentricity. In late anaphase it finishes by passing to one pole leaving in the other pole one of its kinetochores sometimes accompanied by a chromosomal fragment. 4) All the chromosomes divide transversely in both divisions, a diagram being enclosed to elucidate the question. 5) Spermatogonial chromosomes are provided with one kinetochore at each end, being curved toward the poles since the most beginning anaphase. 6) The following hypothesis is presented as an essay to explain the origin of microchromosomes: Since microchromosomes parallel sex chromosomes in most respects, as for instances in heteropycnosis and pairing modus, it seems highly probable that they originate from sex chromosomes. One may suppose that the ancestral form of a given species had a sex chromosome which used to lose a small centric fragment when it divided during meiosis. This fragment might well be at first an unstable one. Later, to compensate the effects of such a deficiency a mechanism arose through evolution which produced two useful results : a) the establishment of the fragment as a permanent structure of the cell nucleus and b) the acquirement by the sex chromosome of the faculty of passing to one pole without losing any of its ends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particular aspects of the meiosis of two species of Hemiptera, namely Megalotomus pallescens (Stal) (Coriscidae) and Jadera sanguinolenta (Fabr.); (Corizidae) are described and discussed in this paper. Megalotomus pallescens This species has primary spermatocytes provided with 7 autosomal tetrads plus a single sex chromosome. The X is smaller than the autosomes and may be found either in the periphery of the circle formed by the autosomal tetrads or in the center together with the m-tetrad which always occupies this position. The X chromosome - In the primary spermatocytes this element, which is tetradiform, orients itself parallelly to the spindle axis and divides transversely by its median constriction. In the secondary spermatocytes it passes undivided to one pole. The m-chromosomes - These chromosomes have been frequently found in close association with the sex chromosome in nuclei wich have passed the diffuse stage, a fact which was considered as affording some evidence in support of the idea /developed by the present writer in another paper with regard to the origin of the m-chromosomes from the sex chromosome. Formation of tetrads - Tetrads appear at first as irregular areas of reticular structure, becoming later more and more distinct. Then, two chromosomal strands very loose and irregular in outline, connected whit each other by several transverse filaments, begin to develop in each area. Growing progressively shorter, thicker and denser, these strands soon give origin to typical Hemiptera tetrads. Jadera sanguinolenta Spermatogonia of this species have 13 chromosomes, that is, 10 autosomes, 2 m-chromosomes and one sex chromosome, one pair of autosomes being much larger than the rest. Chromosomes move toward the poles with both ends looking to them. Primary spermatocytes show 6 tetrads and a single X. The sex chromossome in the first division of the spermatocytes divides as if it was a tetrad, passing undivided to one pole in the second division. In the latter it does not orient, being found anywhere in the cells. Its most common situation in anaphase corresponds therefore to precession. Tetrads are formed here in an entirely different way : the bivalents as they become distinct in the nuclei which came out. of the diffuse stage they appear in form of two thin threads united only at the extremities, an aspect which may better be analized in the larger bivalent. Up from this stage the formation of the tetrads is a mere process of shortening and thickening of both members of the pair. Due to the fact that the paired chromosomes are well separated from each other throughout their entire lenght, the author concluded that chiasmata, if present, are accumulated at the very ends of the bivalents. If no chiasmata have been at all formed, then, what holds together the corresponding extremities must be a strong attraction developed by the kinetochores. If one interprets the bivalents represented in the figures 17-21 as formed by four chromatids paired by one of the ends and united by the opposite one, then the question of the diffuse attachment becomes entirely disproved since it is exactly by the distal extremities that the tetrads later will be connected with the poles. In the opinion of the present writer the facts referred to above are one of the best demonstration at hand of the continuity of the paired threads and at the same time of the dicentricity of Hemiptera chromosomes. In view of the data hitherto collected by the author the behavior of the sex chromosome of the Hemiptera whose males are of the XO type may be summarized as follows: a) The sex chromosome in the primary metaphase appears longitudinally divided, without transverse constriction. It is oriented with the extremities in the plane of the equator and its chromatids separate by the plane of division. (Euryophthalmus, Protenor). In the second division the sex chromosome, provided as it is with an active kinetochore at each end, orients itself with its lenght parallelly to the spindle axis and passes undivided to one pole (Protenor?), or loses to the other pole a centric end (Euryophthalmus) In the latter case it has to become dicentric by means of a longitudinal spliting beginning at the kinetochore. b) The sex chromosome in the primary metaphase is tetradiform, that is, it is provided with a longitudinal split and a median transverse constriction. Orients with its length paral lelly to the spindle axis (what is probably due to the kinetochores being not yet divided) and divides transversely. (Corizas hyalinus, Megalotomus pallescens). in the secondary metaphase the sex chromosome which turned to be dicentric in consequence of a longitudinal spliting initiated in the kineto chore, orients perpendicularly to the equatorial plane and without losing anyone of its extremities passes undivided to one pole (Megalotomus). Or, distending between both poles passes to one side, in which case it loses one of its ends to the other side. (Corizas hyalinus). c) The very short sex chromosome in the first division of the spermatocytes orients in the same manner aa the tetrads and divides transversely. In the second division, due to the inactivity o the inetochore, it remains monocentric and motionless anywhere in the cell, finishing by being enclosed in the nearer nucleus. In the secondary telophase it recuperates its dicentricity at the same time as the autosomal chromatids. (Jadera sanguinolenta, Diactor bilineatus). d) The sex chromosome in the first division orients in the equador with its longitudinal axis parallelly to the spindle axis passing integrally to one pole or, distending itself between the anaphase plates, loses one of its ends to the opposite pole. In this case it becomes dicentric in the prometaphase of the second division, behaving in this division as the autossomes. It thus divides longitudnally. (Pachylis laticomis, Pachylis pharaonis).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lutosa brasiliensis, an Orthopteran Tettigonioidean belonging to the family Stenopelmatidae is referred to in this paper The spermatogonia are provided with 15 chromosomes, that is, 7 pairs of autosomes and a single sex chromosome. One pair of autosomes is much larger than the rest, two pairs are of median sized elements, and four pairs are of small ones. The daughter sex chromosomes show at anaphase great difficulty in reaching the poles, being left for a long while in the region of the equator where they are seen stretched one after the other on the same line or lying side by side in different positions. When the spermatogonium divides each daughter cell gets passively its sex chromosome. Though slowly, the sex chromosome finishes by beins enclosed in the nucleus. Its behavior may be attributed to a very weak kinetic activity of the centromere. In view of se pronouced an inertness of the sex chromosomes, two things may be expected : primary spermatocyte nuclei with two sex chromosomes, and primary spermatocytes with the sex chromosome lying outside the nucleus. Both situations have been discovered. The latter, together with the delay of the spermatogonial sex chromosome in reaching the poles suggested to the anther the mechanism which might have given origin to the cases in which the sex chromosome normally does not enter the nucleus to rejoin the autosomes, remaning outside in its own nucleus. It may well be supposed that accidents like that found in the present individual have turned to be a normal event in the course of the evolution of some species. Trie primary spermatocytes are provided with chromatoid bodies which remain visible all over the whole history of the cells and pass to one of the resulting secondary spermatocytes, the larger of them being found later in the area occupied by the tails of the spermatozoa. No relation of these bodies to nucleoli con?d be established. Pachytene and diplotene nuclei are normal Metaphase nuclei show 7 autosomal tetrads, one of which being much larger than the rest. At this stage the chromosomes have a pronounced tendency to form clumps. Even when they are separated from each other they generally appear competed by chromosomal substance. The sex chromosome Hes always in one of the poles, being enclosed in the nucleus formed there. The stickness of the chromosomes can also be noted at anaphase. Telophase chromosomes distend them- selves for giving origin to secondary spermatocyte nuclei in a state comparable to a beginning prophase. As the secondary spermatocytes approach metaphase the autosomes appear entirely divided except at the kinetochore where the chromatids remain united. In the division of the secondary spermatocytes nothing else merits special reference.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three species studied have 19 chromosomes, being one heterochromosome, one pair of microchromosomes and 8 pairs of autosomes. The microchromosomes of Hypselonotus fulvus are amongst the largest we know. During the synizesis, in Hypselonotus fulvus, we can see in several strands that scape from the chromatic knot a place in which they are widley open. As, in that phase the chromosomes have both ends converging to the same place, the openings suggest a side-to-side pairing of the chromosomal threads. The tetrads are like that studied by Piza (1945-1946). The bivalents are united side by side at their entire length. The unpaired part at the midle of the bivalents gives origin to the arms of the cross-shapede tetrads. The chromosomes have a kinetochore at each end. The bivalents sometimes unite their extremities to form ring-shaped figures, which open themselves out before metaphase. The tetrads are oriented parallelly to the spindle axis. At telophase the kinetochores repeli one another, the chiasmata, if present, slip toward the acentric extremities and the chromosomes rotate in order to arrange themselves parallelly to the axis of the new spindle. Separation is therefore through the pairing plane. In the spermatogonial anaphase of Hypselonotus subterpunctatus the chromosomes are curved to the poles, like those described by PIZA (1946) and PIZA and ZAMITH (1946). The sex chromosomes in Hypselonotus interruptus and Hypselonotus fulvus appears longitudinally divided. It is oriented with the ends in the plane of the equator and its chomatids separate by the plane of division. In the second division the sex chromosome, provided as it is with an actve klnetochore at each end, orients itself with its length parallelly to the spindle axis and passes undivided to one pole. Sometimes it is distended between the poles. This corresponds to case (a) established by PIZA (1946) for the sex chromosomes of Hemiptera In Hypselonotus subterpunctatus the sex chromosome, in the first division of the spermatocytes, orients like the tetrads and divides transversaly. In the second division, as its kinetochore becomes inactive, it remans monocentric, does not orient in the spindle, and is finally enclosed in the nearer nucleus. In the secondary telophase it recuperates its dicentricity like the autosomal chromatids. This behavior corresponds to case (c) of PIZA (1946).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this note the A. A. relate the occurrence of a possible sub-lethal factor, on the Holstein-Friesian herd of Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba. The sire Horto was mated with his own mother, Brisa, and so, were obtained two calves, a male and a female, consecutively. Both the calves presented flexion and deviation of the fore legs. The sire's death has not alloved further observations. The study of these history cases excludes the mother's nutritional deficiency, as the cause of related phenomenon. In the consulted literature, VEIGA and MEAD et al. relate similar cases, although these are observed in other breeds of cattle The A. A. admit that cause of occurrence is a possible sublethal recessive factor, put in evidence by inbreeding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the genetic interaction of Yl Y3 Y7 in producing yellow endosperm in maize. The new data presented are in accordance with preliminary notes on the same subject. The recessive yl, y3 and y7produce respectively green plants, albescent plants and white seedlings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid β-oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological processes can be elucidated by investigating complex networks of relevant factors and genes. However, this is not possible in species for which dominant selectable markers for genetic studies are unavailable. To overcome the limitation in selectable markers for the dermatophyte Arthroderma vanbreuseghemii (anamorph: Trichophyton mentagrophytes), we adapted the flippase (FLP) recombinase-recombination target (FRT) site-specific recombination system from the yeast Saccharomyces cerevisiae as a selectable marker recycling system for this fungus. Taking into account practical applicability, we designed FLP/FRT modules carrying two FRT sequences as well as the flp gene adapted to the pathogenic yeast Candida albicans (caflp) or a synthetic codon-optimized flp (avflp) gene with neomycin resistance (nptII) cassette for one-step marker excision. Both flp genes were under control of the Trichophyton rubrum copper-repressible promoter (PCTR4). Molecular analyses of resultant transformants showed that only the avflp-harbouring module was functional in A. vanbreuseghemii. Applying this system, we successfully produced the Ku80 recessive mutant strain devoid of any selectable markers. This strain was subsequently used as the recipient for sequential multiple disruptions of secreted metalloprotease (fungalysin) (MEP) or serine protease (SUB) genes, producing mutant strains with double MEP or triple SUB gene deletions. These results confirmed the feasibility of this system for broad-scale genetic manipulation of dermatophytes, advancing our understanding of functions and networks of individual genes in these fungi.