912 resultados para ATTENUATES TACHYCARDIA
Resumo:
In order to provide adequate medical assistance to neonates, the extent of vitality impairment has to be investigated through complementary exams, as well as clinical assessment. This investigation aimed to identify the physiological changes that occur during neonatal adaptation and to develop a clinical approach that can be performed during the first hour of life in neonatal lambs born through vaginal eutocic labor. The neonatal vitality of 14 Santa Ines lambs was verified using the Apgar system and rectal temperature at birth and after 5 and 60 min after birth. From the total number of neonates, 7 lambs were randomly selected for blood gas analysis and glucose immediately at birth and 1 h after birth. The lambs had hypoglycemia immediately after birth, as well as acidosis due to metabolic and respiratory causes. Given their hypoxemia at birth, lambs immediately exhibit tachycardia and tachypnea. However, neonatal lambs reached Apgar score superior than 7 after 5 min of birth. Ovine neonates are relatively mature at birth, with adequate thermoregulation and active mechanisms to compensate for physiological acid-base imbalances. In conclusion, a systematic clinical examination of newborn sheep should include the implementation of the Apgar score coupled with the confirmation of any acid-base imbalances. Further research should evaluate neonatal adaptation to this critical period over a longer period of time. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Objective-The coagulation-inflammation cycle has been implicated as a critical component in malaria pathogenesis. Defibrotide (DF), a mixture of DNA aptamers, displays anticoagulant, anti-inflammatory, and endothelial cell (EC)-protective activities and has been successfully used to treat comatose children with veno-occlusive disease. DF was investigated here as a drug to treat cerebral malaria. Methods and Results-DF blocks tissue factor expression by ECs incubated with parasitized red blood cells and attenuates prothrombinase activity, platelet aggregation, and complement activation. In contrast, it does not affect nitric oxide bioavailability. We also demonstrated that Plasmodium falciparum glycosylphosphatidylinositol (Pf-GPI) induces tissue factor expression in ECs and cytokine production by dendritic cells. Notably, dendritic cells, known to modulate coagulation and inflammation systemically, were identified as a novel target for DF. Accordingly, DF inhibits Toll-like receptor ligand-dependent dendritic cells activation by a mechanism that is blocked by adenosine receptor antagonist (8-p-sulfophenyltheophylline) but not reproduced by synthetic poly-A, -C, -T, and -G. These results imply that aptameric sequences and adenosine receptor mediate dendritic cells responses to the drug. DF also prevents rosetting formation, red blood cells invasion by P. falciparum and abolishes oocysts development in Anopheles gambiae. In a murine model of cerebral malaria, DF affected parasitemia, decreased IFN-gamma levels, and ameliorated clinical score (day 5) with a trend for increased survival. Conclusion-Therapeutic use of DF in malaria is proposed. (Arterioscler Thromb Vasc Biol. 2012; 32:786-798.)
Resumo:
The practice of running has consistently increased worldwide, and with it, related lower limb injuries. The type of running surface has been associated with running injury etiology, in addition other factors, such as the relationship between the amount and intensity of training. There is still controversy in the literature regarding the biomechanical effects of different types of running surfaces on foot-floor interaction. The aim of this study was to investigate the influence of running on asphalt, concrete, natural grass, and rubber on in-shoe pressure patterns in adult recreational runners. Forty-seven adult recreational runners ran twice for 40 m on all four different surfaces at 12 +/- 5% km . h(-1). Peak pressure, pressure-time integral, and contact time were recorded by Pedar X insoles. Asphalt and concrete were similar for all plantar variables and pressure zones. Running on grass produced peak pressures 9.3% to 16.6% lower (P < 0.001) than the other surfaces in the rearfoot and 4.7% to 12.3% (P < 0.05) lower in the forefoot. The contact time on rubber was greater than on concrete for the rearfoot and midfoot. The behaviour of rubber was similar to that obtained for the rigid surfaces - concrete and asphalt - possibly because of its time of usage (five years). Running on natural grass attenuates in-shoe plantar pressures in recreational runners. If a runner controls the amount and intensity of practice, running on grass may reduce the total stress on the musculoskeletal system compared with the total musculoskeletal stress when running on more rigid surfaces, such as asphalt and concrete.
Resumo:
Amlodipine is a dihydropyridine calcium channel antagonist extensively used for the treatment of arterial hypertension, with predominant effect on the peripheral vascular territory. In most cases of severe intoxication, important hypotension and reflex tachycardia are usually observed. We report a case of young man with severe amlodipine intoxication that developed important bradyarrhythmias, such as low atrial rhythm, prolonged PR interval, atrioventricular block, and left bundle branch block. These rhythm disturbances suggest that, during acute intoxication, dihydropyridine loses its selective action on the vascular territory and can depress automatism and conduction of cardiac electrical stimulus.
Resumo:
Purpose: The study aimed to assess electrocardiographic alterations during oral implant placement surgeries under local anesthesia (lidocaine chlorhydrate with epinephrine), using 15 mg of midazolam as an anxiolytic premedication. Material and methods: The study randomly selected 20 patients, aged 21-50 years old, requiring bilateral mandibular dental implants. Each patient was assessed using placebo on one side and midazolam on the contralateral side, with random, double-blinded distribution. The electrocardiogram recorded 12 static leads every 2 min, while D2 derivations were recorded continuously. Results: No statistically significant differences were observed between the placebo and midazolam when analyzing the morphological behavior of the electrocardiographic wave and the presence of arrhythmias during the experiment. However, under sedation, assessment of the behavior of electrocardiographic parameters during different stages of the procedure revealed statistically significant differences (P<0.05) for heart rate, P-wave amplitude and duration of the RR and QTc intervals. The arrhythmias detected were considered low risk for patients without systemic alterations and were observed in 53.3% of patients. The most frequently occurring alterations were tachycardia, bradycardia, supraventricular and ventricular extrasystoles and blocked atrial extrasystole, which were similar for both placebo and midazolam, with the greatest incidence during the initial, incision and bone drilling stages. Conclusion: The use of 15 mg of midazolam made no difference compared with the placebo. The use of 15 mg of midazolam did not show an advantage in the incidence of arrhythmias The anxiolytic premedication does not prevent myocardial arrhythmias in endosseous implant placement. The clinical significance of the arrhythmias may not represent serious risks.
Resumo:
Goncalves DA, Silveira WA, Lira EC, Gra a FA, Paula-Gomes S, Zanon NM, Kettelhut IC, Navegantes LC. Clenbuterol suppresses proteasomal and lysosomal proteolysis and atrophy-related genes in denervated rat soleus muscles independently of Akt. Am J Physiol Endocrinol Metab 302: E123-E133, 2012. First published September 27, 2011; doi:10.1152/ajpendo.00188.2011.-Although it is well known that administration of the selective beta(2)-adrenergic agonist clenbuterol (CB) protects muscle following denervation (DEN), the underlying molecular mechanism remains unclear. We report that in vivo treatment with CB (3 mg/kg sc) for 3 days induces antiproteolytic effects in normal and denervated rat soleus muscle via distinct mechanisms. In normal soleus muscle, CB treatment stimulates protein synthesis, inhibits Ca(2+)-dependent proteolysis, and increases the levels of calpastatin protein. On the other hand, the administration of CB to DEN rats ameliorates the loss of muscle mass, enhances the rate of protein synthesis, attenuates hyperactivation of proteasomal and lysosomal proteolysis, and suppresses the transcription of the lysosomal protease cathepsin L and of atrogin-1/MAFbx and MuRF1, two ubiquitin (Ub) ligases involved in muscle atrophy. These effects were not associated with alterations in either IGF-I content or Akt phosphorylation levels. In isolated muscles, CB (10(-6) M) treatment significantly attenuated DEN-induced overall proteolysis and upregulation in the mRNA levels of the Ub ligases. Similar responses were observed in denervated muscles exposed to 6-BNZ-cAMP (500 mu M), a PKA activator. The in vitro addition of triciribine (10 mu M), a selective Akt inhibitor, did not block the inhibitory effects of CB on proteolysis and Ub ligase mRNA levels. These data indicate that short-term treatment with CB mitigates DEN-induced atrophy of the soleus muscle through the stimulation of protein synthesis, downregulation of cathepsin L and Ub ligases, and consequent inhibition of lysosomal and proteasomal activities and that these effects are independent of Akt and possibly mediated by the cAMP/PKA signaling pathway.
Resumo:
In the present study, we investigated the involvement of beta-adrenoceptors in the medial amygdaloid nucleus (MeA) in cardiovascular responses evoked in rats submitted to an acute restraint stress. We first pretreated Wistar rats with the nonselective beta-adrenoceptor antagonist propranolol microinjected bilaterally into the MeA (10, 15, and 20 nmol/100 nL) 10 min before exposure to acute restraint. The pretreatment with propranolol did not affect the blood pressure (BP) increase evoked by restraint. However, it increased the tachycardiac response caused by acute restraint when animals were pretreated with a dose of 15 nmol, without a significant effect on the BP response. This result indicates that beta-adrenoceptors in the MeA have an inhibitory influence on restraint-evoked heart rate (HR) changes. Pretreatment with the selective beta(2)-adrenoceptor antagonist ICI 118,551 (10, 15, and 20 nmol/100 nL) significantly increased the restraint-evoked tachycardiac response after doses of 15 and 20 nmol, an effect that was similar to that observed after the pretreatment with propranolol at a dose of 15 nmol, without a significant effect on the BP response. Pretreatment of the MeA with the selective beta(1)-adrenoceptor antagonist CGP 20712 (10, 15, and 20 nmol/100 nL) caused an opposite effect on the HR response, and a significant decrease in the restraint-evoked tachycardia was observed only after the dose of 20 nmol, without a significant effect on the BP response. Because propranolol is an equipotent antagonist of both beta(1) and beta(2)-adrenoceptors, and opposite effects were observed after the treatment with the higher doses of the selective antagonists ICI 118,551 and CGP 20712, the narrow window in the dose-response to propranolol could be explained by a functional antagonism resulting from the simultaneous inhibition of beta(1) and beta(2)-adrenoceptors by the treatment with propranolol. The present results suggest that beta(2)-adrenoceptors have an inhibitory influence on the restraint-evoked tachycardiac response, whereas beta(1)-adrenoceptors have a facilitatory influence on the restraint-evoked tachycardiac response. (c) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background: Heart failure (HF) is known to lead to skeletal muscle atrophy and dysfunction. However, intracellular mechanisms underlying HF-induced myopathy are not fully understood. We hypothesized that HF would increase oxidative stress and ubiquitin-proteasome system (UPS) activation in skeletal muscle of sympathetic hyperactivity mouse model. We also tested the hypothesis that aerobic exercise training (AET) would reestablish UPS activation in mice and human HF. Methods/Principal Findings: Time-course evaluation of plantaris muscle cross-sectional area, lipid hydroperoxidation, protein carbonylation and chymotrypsin-like proteasome activity was performed in a mouse model of sympathetic hyperactivity-induced HF. At the 7th month of age, HF mice displayed skeletal muscle atrophy, increased oxidative stress and UPS overactivation. Moderate-intensity AET restored lipid hydroperoxides and carbonylated protein levels paralleled by reduced E3 ligases mRNA levels, and reestablished chymotrypsin-like proteasome activity and plantaris trophicity. In human HF (patients randomized to sedentary or moderate-intensity AET protocol), skeletal muscle chymotrypsin-like proteasome activity was also increased and AET restored it to healthy control subjects' levels. Conclusions: Collectively, our data provide evidence that AET effectively counteracts redox imbalance and UPS overactivation, preventing skeletal myopathy and exercise intolerance in sympathetic hyperactivity-induced HF in mice. Of particular interest, AET attenuates skeletal muscle proteasome activity paralleled by improved aerobic capacity in HF patients, which is not achieved by drug treatment itself. Altogether these findings strengthen the clinical relevance of AET in the treatment of HF.
Resumo:
In a previous study, we reported that the short-term treatment with celecoxib, a nonsteroidal anti-inflammatory drug (NSAID) attenuates the activation of brain structures related to nociception and does not interfere with orthodontic incisor separation in rats. The conclusion was that celecoxib could possibly be prescribed for pain in orthodontic patients. However, we did not analyze the effects of this drug in periodontium. The aim of this follow-up study was to analyze effects of celecoxib treatment on recruitment and activation of osteoclasts and alveolar bone resorption after inserting an activated orthodontic appliance between the incisors in our rat model. Twenty rats (400420 g) were pretreated through oral gavage with celecoxib (50 mg/kg) or vehicle (carboxymethylcellulose 0.4%). After 30 min, they received an activated (30 g) orthodontic appliance, set not to cause any palate disjunction. In sham animals, the appliance was immediately removed after introduction. All animals received ground food and, every 12 h, celecoxib or vehicle. After 48 h, they were anesthetized and transcardiacally perfused through the aorta with 4% formaldehyde. Subsequently, maxillae were removed, post-fixed and processed for histomorphometry or immunohistochemical analyses. As expected, incisor distalization induced an inflammatory response with certain histological changes, including an increase in the number of active osteoclasts at the compression side in group treated with vehicle (appliance: 32.2 +/- 2.49 vs sham: 4.8 +/- 1.79, P<0.05) and celecoxib (appliance: 31.0 +/- 1.45 vs sham: 4.6 +/- 1.82, P<0.05). The treatment with celecoxib did not modify substantially the histological alterations and the number of active osteoclasts after activation of orthodontic appliance. Moreover, we did not see any difference between the groups with respect to percentage of bone resorption area. Taken together with our previous results we conclude that short-term treatment with celecoxib can indeed be a therapeutic alternative for pain relieve during orthodontic procedures.
Resumo:
Medial amygdaloid nucleus (MeA) neurotransmission has an inhibitory influence on cardiovascular responses in rats submitted to restraint, which are characterized by both elevated blood pressure (BP) and intense heart rate (HR) increase. In the present study, we investigated the involvement of MeA adrenoceptors in the modulation of cardiovascular responses that are observed during an acute restraint. Male Wistar rats received bilateral microinjections of the selective alpha 1-adrenoceptor antagonist WB4101 (10, 15, and 20 nmol/100 nL) or the selective alpha 2-adrenoceptor antagonist RX821002 (10, 15, and 20 nmol/nL) into the MeA, before the exposure to acute restraint. The injection of WB4101 reduced the restraint-evoked tachycardia. In contrast, the injection of RX821002 increased the tachycardia. Both drugs had no influence on BP increases observed during the acute restraint. Our findings indicate that alpha 1 and alpha 2-adrenoceptors in the MeA play different roles in the modulation of the HR increase evoked by restraint stress in rats. Results suggest that alpha 1-adrenoceptors and alpha 2-adrenoceptors mediate the MeA-related facilitatory and inhibitory influences on restraint-related HR responses, respectively. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We investigated whether interleukin-4 (IL-4) is present and capable of reducing inflammatory changes seen in ifosfamide-induced hemorrhagic cystitis. Male Swiss mice were treated with saline or ifosfamide alone or ifosfamide with the classical protocol with mesna and analyzed by changes in bladder wet weight (BWW), macroscopic and microscopic parameters, exudate, and hemoglobin quantification. In other groups, IL-4 was administered intraperitoneally 1 h before ifosfamide. In other experimental groups, C57BL/6 WT (wild type) and C57BL/6 WT IL-4 (-/-) knockout animals were treated with ifosfamide and analyzed for changes in BWW. Quantification of bladder IL-4 protein by ELISA in control, ifosfamide-, and mesna-treated groups was performed. Immunohistochemistry to tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) as well as protein identification by Western blot assay for inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was carried out on ifosfamide- and IL-4-treated animals. In other experimental groups, antiserum against IL-4 was given 30 min before ifosfamide. In IL-4-treated animals, the severity of hemorrhagic cystitis was significantly milder than in animals treated with ifosfamide only, an effect that was reverted with serum anti-IL-4. Moreover, knockout animals for IL-4 (-/-) exhibit a worse degree of inflammation when compared to C57BL/6 wild type. Exogenous IL-4 also attenuated TNF-alpha, IL-1 beta, iNOS, and COX-2 expressions in ifosfamide-treated bladders. IL-4, an anti-inflammatory cytokine, attenuates the inflammation seen in ifosfamide-induced hemorrhagic cystitis.
Resumo:
Vascular dysfunction associated with two-kidney, one-clip (2K-1C) hypertension may result from both altered matrix metalloproteinase (MMP) activity and higher concentrations of reactive oxygen species (ROS). Doxycycline is considering the most potent MMP inhibitor of tetracyclines and attenuates 2K-1C hypertension-induced high blood pressure and chronic vascular remodeling. Doxycycline might also act as a ROS scavenger and this may contribute to the amelioration of some cardiovascular diseases associated with increased concentrations of ROS. We hypothesized that in addition to its MMP inhibitory effect, doxycycline attenuates oxidative stress and improves nitric oxide (NO) bioavailability in 2K-1C hypertension, thus improving hypertension-induced arterial endothelial dysfunction. Sham operated or 2K-1C hypertensive rats were treated with doxycycline 30 mg/kg/day (or vehicle). After 8 weeks of treatment, aortic rings were isolated to assess endothelium dependent vasorelaxation to A23187. Arterial and systemic levels of ROS were respectively measured using dihydroethidine (DHE) and thiobarbituric acid reactive substances (TBARS). Neutrophils-derived ROS were tested in vitro using the fluoroprobe Carboxy-H(2)DCFDA and human neutrophils stimulated with phorbol 12-myristate 13-acetate (PMA). NO levels were assessed in rat aortic endothelial cells by confocal microscopy. Aortic MMP activity was determined by in situ zymography. Doxycycline attenuated 2K-1C hypertension (169 +/- 17.3 versus 209 +/- 10.9 mm Hg in hypertensive controls, p < 0.05) and protected against hypertension-induced reduction in endothelium-dependent vasorelaxation to A23187 (p < 0.05). Doxycycline also decreased hypertension-induced oxidative stress (p <= 0.05), higher MMP activity (p < 0.01) and improved NO levels in aortic endothelial cells (p < 0.01). Therefore, doxycycline ameliorates 2K-1C hypertension-induced endothelial dysfunction in aortas by inhibiting oxidative stress generation and improving NO bioavailability, in addition to its inhibitory effects on MMP activity. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Systemic administration of cannabidiol (CBD) attenuates cardiovascular and behavioral changes induced by re-exposure to a context that had been previously paired with footshocks. Previous results from our group using cFos immunohistochemistry suggested that the bed nucleus of the stria terminalis (BNST) is involved in this effect. The mechanisms of CBD effects are still poorly understood, but could involve 5-HT1A receptor activation. Thus, the present work investigated if CBD administration into the BNST would attenuate the expression of contextual fear conditioning and if this effect would involve the activation of 5-HT1A receptors. Male Wistar rats with cannulae bilaterally implanted into the BNST were submitted to a 10 min conditioning session (six footshocks, 1.5 mA/3 s). Twenty-four hours later freezing and cardiovascular responses (mean arterial pressure and heart rate) to the conditioning box were measured for 10 min. CBD (15, 30 or 60 nmol) or vehicle was administered 10 min before the re-exposure to the aversive context. The second experiment was similar to the first one except that animals received microinjections of the 5-HT1A receptor antagonist WAY100635 (0.37 nmol) 5 min before CBD (30 nmol) treatment. The results showed that CBD (30 and 60 nmol) treatment significantly reduced the freezing and attenuated the cardiovascular responses induced by re-exposure to the aversive context. Moreover, WAY100635 by itself did not change the cardiovascular and behavioral response to context, but blocked the CBD effects. These results suggest that CBD can act in the BNST to attenuate aversive conditioning responses and this effect seems to involve 5-HT1A receptor-mediated neurotransmission.
Resumo:
Objective: Aging is characterized by alterations in body composition such as an increase in body fat and decreases in muscle mass (sarcopenia) and bone density (osteopenia). Leucine supplementation has been shown to acutely stimulate protein synthesis and to decrease body fat. However, the long-term effect of consistent leucine supplementation is not well defined. This study investigated the effect of leucine supplementation during aging. Methods: Six-month-old rats were divided into three groups: an adult group (n = 10) euthanized at 6 mo of age, a leucine group (n = 16) that received a diet supplemented with 4% leucine for 40 wk, and a control group (n = 19) that received the control diet for 40 wk. The following parameters were evaluated: body weight, food intake, chemical carcass composition, indicators of acquired chronic diseases, and indicators of protein nutritional status. Results: Body weight and fat were lower in the leucine group after 40 wk of supplementation compared with the control group but still higher than in the adult group. The lipid and glycemic profiles were equally altered in the control and leucine groups because of aging. In addition, leucine supplementation did not affect the changes in protein status parameters associated with aging, such as decreases in body and muscle protein and total serum protein. Conclusion: The results indicate that leucine supplementation attenuates body fat gain during aging but does not affect risk indicators of acquired chronic diseases. Furthermore, supplemented animals did not show signs of a prevention of the decrease in lean mass associated with aging. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Polyphenol-enriched fractions from natural sources have been proposed to interfere with angiogenesis in pathological conditions. We recently reported that red propolis polyphenols (RPP) exert antiangiogenic activity. However, molecular mechanisms of this activity remain unclear. Here, we aimed at characterizing molecular mechanisms to explain the impact of RPP on endothelial cells' (EC) physiology. We used in vitro and ex and in vivo models to test the hypothesis that RPP inhibit angiogenesis by affecting hypoxia-inducible factor-1 alpha (HIF1 alpha) stabilization in EC. RPP (10 mg/L) affected angiogenesis by reducing migration and sprouting of EC, attenuated the formation of new blood vessels, and decreased the differentiation of embryonic stem cells into CD31-positive cells. Moreover, RPP (10 mg/L) inhibited hypoxia- or dimethyloxallylglycine-induced mRNA and protein expression of the crucial angiogenesis promoter vascular endothelial growth factor (VEGF) in a time-dependent mariner. Under hypoxic conditions, RPP at 10 mg/L, supplied for 1-4 h, decreased HIF1 alpha protein accumulation, which in turn attenuated VEGF gene expression. In addition, RPP reduced the HIF1 alpha protein half-life from similar to 58 min to 38 min under hypoxic conditions. The reduced HIF1 alpha protein half-life was associated with an increase in the von Hippel-Lindau (pVHL)-dependent proteasomal degradation of HIF1 alpha. RPP (10 mg/L, 4 h) downregulated Cdc42 protein expression. This caused a corresponding increase in pVHL protein levels and a subsequent degradation of HIF1 alpha. In summary, we have elucidated the underlying mechanism for the antiangiogenic action of RPP, which attenuates HIF1 alpha protein accumulation and signaling. J. Nutr. 142: 441-447, 2012.