860 resultados para ANAEROBIC FLUIDIZED BED REACTOR
Resumo:
Pioneer work on iontophoresis undertaken by David Maurice during the 1970s and 1980s laid the initial groundwork for its potential implementation as a promising ocular therapeutic modality. A better understanding of tissue interactions within the eye during electric current application, along with better designs of drug delivery devices have enabled us to pursue David Maurice's original ideas and take them from the bench to the bed side. In the present study we demonstrate the potential application of an iontophoresis device (Eyegate, Optis, France) for the treatment of certain human eye diseases. Seventeen patients received a penetrating keratoplasty (PKP) at various intervals before presentation with active graft rejection in our clinic and were treated using this iontophoresis device. Methylprednisolone sodium succinate (MP) 62.5 mg/ml was infused within the Eyegate ocular probe container and an electrical current of 1.5 mA was delivered for 4 min with the negative pole connected to the ocular probe. Patients were treated on an ambulatory basis and received a standard course of three iontophoresis applications given once a day over 3 consecutive days. After treatment, 15 of the 17 treated eyes (88%) demonstrated a complete reversal of the rejection processes. In two eyes, only a partial and temporary improvement was observed. The mean best corrected visual acuity of all 17 patients during the last follow up visit was 0.37 +/- 0.2 compared to 0.06 +/- 0.05 before initiation of the iontophoresis treatment. The mean follow-up time was 13.7 months with a range of 5-29 months for the 17 patients. No significant side-effects associated with the iontophoresis treatment were observed. Thus, for the management of active corneal graft rejection, iontophoresis of MP can be an alternative to very frequent instillations of eye drops, or to pulsed intravenous therapy of corticosteroids.
Resumo:
OBJECTIVE: To assess the properties of various indicators aimed at monitoring the impact on the activity and patient outcome of a bed closure in a surgical intensive care unit (ICU). DESIGN: Comparison before and after the intervention. SETTING: A surgical ICU at a university hospital. PATIENTS: All patients admitted to the unit over two periods of 10 months. INTERVENTION: Closure of one bed out of 17. MEASUREMENTS AND RESULTS: Activity and outcome indicators in the ICU and the structures upstream from it (emergency department, operative theater, recovery room) and downstream from it (intermediate care units). After the bed closure, the monthly medians of admitted patients and ICU hospital days increased from 107 (interquartile range 94-112) to 113 (106-121, P=0.07) and from 360 (325-443) to 395 (345-436, P=0.48), respectively, along with the linear trend observed in our institution. All indicators of workload, patient severity, and outcome remained stable except for SAPS II score, emergency admissions, and ICU readmissions, which increased not only transiently but also on a mid-term basis (10 months), indicating that the process of patient care delivery was no longer predictable. CONCLUSIONS: Health care systems, including ICUs, are extraordinary flexible, and can adapt to multiple external constraints without altering commonly used activity and outcome indicators. It is therefore necessary to set up multiple indicators to be able to reliably monitor the impact of external interventions and intervene rapidly when the system is no longer under control.
Resumo:
Langattoman laajakaistaisen tietoliikennetekniikan kehittyminen on herättänyt kiinnostuksen sen ammattimaiseen hyödyntämiseen yleisen turvallisuuden ja kriisinhallinnan tarpeisiin. Hätätilanteissa usein olemassa olevat kiinteät tietoliikennejärjestelmät eivät ole ollenkaan käytettävissä tai niiden tarjoama kapasiteetti ei ole riittävä. Tästä syystä on noussut esiin tarve nopeasti toimintakuntoon saatettaville ja itsenäisille langattomille laajakaistaisille järjestelmille. Tässä diplomityössä on tarkoitus tutkia langattomia ad hoc monihyppy -verkkoja yleisen turvallisuuden tarpeiden pohjalta ja toteuttaa testialusta, jolla voidaan demonstroida sekä tutkia tällaisen järjestelmän toimintaa käytännössä. Työssä tutkitaan pisteestä pisteeseen sekä erityisesti pisteestä moneen pisteeseen suoritettavaa tietoliikennettä. Mittausten kohteena on testialustan tiedonsiirtonopeus, lähetysteho ja vastaanottimen herkkyys. Näitä tuloksia käytetään simulaattorin parametreina, jotta simulaattorin tulokset olisivat mahdollisimman aidot ja yhdenmukaiset testialustan kanssa. Sen jälkeen valitaan valikoima yleisen turvallisuuden vaatimusten mukaisia ohjelmia ja sovellusmalleja, joiden suorituskyky mitataan erilaisten reititysmenetelmien alaisena sekä testialustalla että simulaattorilla. Tuloksia arvioidaan ja vertaillaan. Multicast monihyppy -video päätettiin sovelluksista valita tutkimusten pääkohteeksi ja sitä sekä sen ominaisuuksia on tarkoitus myös oikeissa kenttäkokeissa.
Resumo:
Diplomityö käsittelee kiehutusvesilaitosten transienttien ja onnettomuuksien analysointia APROS-ohjelmiston avulla. Työ on tehty Teollisuuden Voima Oy:n (TVO) Olkiluoto 1 ja 2 laitosyksiköiden mallin pohjalta. Raportissa esitetään ohjelmiston käyttämiä yhtälöitäja laskentamalleja yleisellä tasolla. Työssä esitellään laitoksen yleispiirteet turvallisuustoimintoineen ja kuvataan ohjelmaan suureksi osaksi aiemmin luotua laskentamallia. Työssä on luetteloitu voimassa olevatlisensiointianalyysit, joiden joukosta on valittu laskentatapauksia ohjelmiston suorituskyvyn arviointia varten. Lisäksi työhön on valittu laskentatapauksia muilla kuin lisensointiin käytetyillä ohjelmilla lasketuista analyyseistä. Lisäksi on suoritettu vertailulaskuja konservatiivisen ja realistisen mallin erojen esille saamiseksi. Laskentatapauksia ovat mm. ylipainetransientti, jäähdytteen menetysonnettomuus ja oletettavissa oleva käyttöhäiriö, jossa pikasulku ei toimi (ATWS). Diplomityön edetessä laitosmallia on kehitetty edelleen lisäämällä joitakin järjestelmiä ja tarkentamalla joidenkin komponenttien kuvausta. Työssä ilmeni, että APROS soveltuu jäähdytteenmenetysonnettomuuden ja suojarakennuksen yhtäaikaiseen analyysiin. APROS.n vaste nopeisiin transientteihin jäi kuitenkin vertailutasosta. Tämän työn perusteella APROS-mallia kehitys jatkuu edelleen siten, että se soveltuisi entistä paremmin myös nopeiden transienttien ja ATWS-tilanteiden kuvaamiseen. Työssä olevaa lisensointianalyysien kuvausta tullaan käyttämään hyväksi selvitettäessä laitoksen turvallisuuden väliarviossa tarvittavien analyysien määrää ja laatua. Nyt saatuja kokemuksia voidaan hyödyntää myös mahdollisen kolmiulotteisen sydänmallin hankinnassa APROS-ohjelmistoon. Tässä diplomityössä esitettyjä parannuksia voidaan käyttää hyväksi SAFIRtutkimusohjelman hankkeiden suunnittelussa.
Resumo:
Dynamic behavior of bothisothermal and non-isothermal single-column chromatographic reactors with an ion-exchange resin as the stationary phase was investigated. The reactor performance was interpreted by using results obtained when studying the effect of the resin properties on the equilibrium and kinetic phenomena occurring simultaneously in the reactor. Mathematical models were derived for each phenomenon and combined to simulate the chromatographic reactor. The phenomena studied includes phase equilibria in multicomponent liquid mixture¿ion-exchange resin systems, chemicalequilibrium in the presence of a resin catalyst, diffusion of liquids in gel-type and macroporous resins, and chemical reaction kinetics. Above all, attention was paid to the swelling behavior of the resins and how it affects the kinetic phenomena. Several poly(styrene-co-divinylbenzene) resins with different cross-link densities and internal porosities were used. Esterification of acetic acid with ethanol to produce ethyl acetate and water was used as a model reaction system. Choosing an ion-exchange resin with a low cross-link density is beneficial inthe case of the present reaction system: the amount of ethyl acetate as well the ethyl acetate to water mole ratio in the effluent stream increase with decreasing cross-link density. The enhanced performance of the reactor is mainly attributed to increasing reaction rate, which in turn originates from the phase equilibrium behavior of the system. Also mass transfer considerations favor the use ofresins with low cross-link density. The diffusion coefficients of liquids in the gel-type ion-exchange resins were found to fall rapidly when the extent of swelling became low. Glass transition of the polymer was not found to significantlyretard the diffusion in sulfonated PS¿DVB ion-exchange resins. It was also shown that non-isothermal operation of a chromatographic reactor could be used to significantly enhance the reactor performance. In the case of the exothermic modelreaction system and a near-adiabatic column, a positive thermal wave (higher temperature than in the initial state) was found to travel together with the reactive front. This further increased the conversion of the reactants. Diffusion-induced volume changes of the ion-exchange resins were studied in a flow-through cell. It was shown that describing the swelling and shrinking kinetics of the particles calls for a mass transfer model that explicitly includes the limited expansibility of the polymer network. A good description of the process was obtained by combining the generalized Maxwell-Stefan approach and an activity model that was derived from the thermodynamics of polymer solutions and gels. The swelling pressure in the resin phase was evaluated by using a non-Gaussian expression forthe polymer chain length distribution. Dimensional changes of the resin particles necessitate the use of non-standard mathematical tools for dynamic simulations. A transformed coordinate system, where the mass of the polymer was used as a spatial variable, was applied when simulating the chromatographic reactor columns as well as the swelling and shrinking kinetics of the resin particles. Shrinking of the particles in a column leads to formation of dead volume on top of the resin bed. In ordinary Eulerian coordinates, this results in a moving discontinuity that in turn causes numerical difficulties in the solution of the PDE system. The motion of the discontinuity was eliminated by spanning two calculation grids in the column that overlapped at the top of the resin bed. The reactive and non-reactive phase equilibrium data were correlated with a model derived from thethermodynamics of polymer solution and gels. The thermodynamic approach used inthis work is best suited at high degrees of swelling because the polymer matrixmay be in the glassy state when the extent of swelling is low.
Resumo:
The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.
Resumo:
To permit the tracking of turbulent flow structures in an Eulerian frame from single-point measurements, we make use of a generalization of conventional two-dimensional quadrant analysis to three-dimensional octants. We characterize flow structures using the sequences of these octants and show how significance may be attached to particular sequences using statistical mull models. We analyze an example experiment and show how a particular dominant flow structure can be identified from the conditional probability of octant sequences. The frequency of this structure corresponds to the dominant peak in the velocity spectra and exerts a high proportion of the total shear stress. We link this structure explicitly to the propensity for sediment entrainment and show that greater insight into sediment entrainment can be obtained by disaggregating those octants that occur within the identified macroturbulence structure from those that do not. Hence, this work goes beyond critiques of Reynolds stress approaches to bed load entrainment that highlight the importance of outward interactions, to identifying and prioritizing the quadrants/octants that define particular flow structures. Key Points <list list-type=''bulleted'' id=''jgrf20196-list-0001''> <list-item id=''jgrf20196-li-0001''>A new method for analysing single point velocity data is presented <list-item id=''jgrf20196-li-0002''>Flow structures are identified by a sequence of flow states (termed octants) <list-item id=''jgrf20196-li-0003''>The identified structure exerts high stresses and causes bed-load entrainment
Resumo:
PURPOSE: This study aimed to determine the neuro-mechanical and metabolic adjustments in the lower limbs induced by the running anaerobic sprint test (the so-called RAST). METHODS: Eight professional football players performed 6 × 35 m sprints interspersed with 10 s of active recovery on artificial turf with their football shoes. Sprinting mechanics (plantar pressure insoles), root mean square activity of the vastus lateralis (VL), rectus femoris (RF), and biceps femoris (BF) muscles (surface electromyography, EMG) and VL muscle oxygenation (near-infrared spectroscopy) were monitored continuously. RESULTS: Sprint time, contact time and total stride duration increased from the first to the last repetition (+17.4, +20.0 and +16.6 %; all P < 0.05), while flight time and stride length remained constant. Stride frequency (-13.9 %; P < 0.001) and vertical stiffness decreased (-27.2 %; P < 0.001) across trials. Root mean square EMG activities of RF and BF (-18.7 and -18.1 %; P < 0.01 and 0.001, respectively), but not VL (-1.2 %; P > 0.05), decreased over sprint repetitions and were correlated with the increase in running time (r = -0.82 and -0.90; both P < 0.05). Together with a better maintenance of RF and BF muscles activation levels over sprint repetitions, players with a better repeated-sprint performance (lower cumulated times) also displayed faster muscle de- (during sprints) and re-oxygenation (during recovery) rates (r = -0.74 and -0.84; P < 0.05 and 0.01, respectively). CONCLUSION: The repeated anaerobic sprint test leads to substantial alterations in stride mechanics and leg-spring behaviour. Our results also strengthen the link between repeated-sprint ability and the change in neuromuscular activation as well as in muscle de- and re-oxygenation rates.
Resumo:
The relation between the equivalent roughness and different grain size percentiles of the sediment in gravel-bed rivers was determined under the hypothesis that the vertical distribution of the flow velocity follows a logarithmic law. A set of 954 data points was selected from rivers with gravel size sediment or larger, with a non-sinuous alignment and free of vegetation or obstacles. According to the results, the ks roughness is equivalent to approximately 2.4D90, 2.8D84, and 6.1D50. No correlation was detected between the sediment sorting and the sediment mobility index on one hand, and, on the other, the coefficient of proportionality of each grain size percentile.
Resumo:
This study evaluated the chemical composition of peeled and unpeeled green banana Cavendish (AAA) flour obtained by drying in spouted bed, aiming at adding nutritional value to food products. The bananas were sliced and crushed to obtain a paste and fed to the spouted bed dryer (12 cm height and T = 80 ºC) in order to obtain flour. The flours obtained were subjected to analysis of moisture, protein, ash, carbohydrates, total starch, resistant starch, fiber. The green banana flours, mainly unpeeled, are good sources of fiber and resistant starch with an average of 21.91g/100g and 68.02g/100g respectively. The protein content was found in an average of 4.76g/100g, being classified as a low biological value protein with lysine as the first limiting amino acid. The results showed that unpeeled green banana flour obtained by spouted bed drying can be a valuable tool to add nutritional value to products in order to increase their non-digestible fraction.
Resumo:
Työn teoriaosassa esitetään kirjallisuudessa esiintyviä teoreettisia ja kokeellisia yhtälöitä nesteen nopeuden, kaasun tilavuusosuuden, painehäviön ja lämmönsiirron laskemiseksi. Lisäksi käsitellään airlift-reaktoreiden toimintaa, rakennetta ja teollisia sovelluksia, sekä sekoitusta ja geometrian vaikutusta airlift-reaktoreiden hydrodynaamisiin ominaisuuksiin. Kokeellisessa osassa kuvataan käytetty koelaitteisto ja mittausmenetelmät sekä esitetään saadut koetulokset. Koelaitteisto on viidellä nousuputkella varustettu ulkoisen kierron airlift-reaktori. Kokeellisessa osassa pyritään ratkaisemaan tällaisessa reaktorissa mahdollisesti esiintyviä ongelmia, kuten "slug flown" muodostuminen nousuputkissa sekä fluidien epätasainen jakautuminen nousuputkiin. Lisäksi tutkitaan erilaisten muuttujien, kuten kaasun tilavuusvirran, nesteen viskositeetin, suutinkoon ja nesteen jakoputken rakenteen, vaikutusta kaasun tilavuusosuuteen ja nesteen nopeuteen nousuputkissa. Nesteen nopeudet mitataan merkkiainemenetelmällä ja kaasun tilavuusosuudet manometrimenetelmällä. Lämmönsiirtoa tutkitaan mittaamalla lämpötilaeroja nousuputkissa NiCr-Ni –termoelementeillä. Mittaustulosten perusteella muokataan korrelaatiot kaasun tilavuusosuudelle ja nesteen tyhjäputkinopeudelle. Korrelaatioista lasketut tulokset sopivat kohtuullisen hyvin yhteen mitattujen tulosten kanssa. "Slug flown" ei todettu muodostuvan ongelmaksi 2.5 mPa s pienemmillä viskositeetin arvoilla 2 metriä pitkissä ja 19 mm halkaisijaltaan olevissa putkissa. Lisäksi todettiin, että kaasu- ja nestefaasien jakautumisongelmat voidaan ratkaista rakenteellisesti.
Resumo:
Objectives : This study compares three methods to forecast the number of acute somatic hospital beds needed in a Swiss academic hospital over the period 2010-2030. Design : Information about inpatient stays is provided through a yearly mandatory reporting of Swiss hospitals, containing anonymized data. Forecast of the numbers of beds needed compares a basic scenario relying on population projections with two other methods in use in our country that integrate additional hypotheses on future trends in admission rates and length of stay (LOS).
Resumo:
RESUMO O morango é uma fruta de alto valor comercial e tem uma rápida deterioração, como a demanda por produtos saudáveis, seguros sob o ponto de vista microbiológico e livre de produtos químicos aumenta cada vez mais, o método de aplicação do gás ozônio em uma atmosfera controlada foi proposto. O objetivo deste trabalho foi verificar a eficiência do gás ozônio produzido por um reator, a fim de que os pequenos produtores de morangos possam usá-lo, contribuindo, assim, para as economias regionais. Morangos (Fragaria ananassa) variedade Oso Grande, colhidasna região de Minas Gerais foram divididas dois grupos: o primeiro recebeu tratamento com ozônio e o segundo não. No primeiro grupo, o ozônio foi aplicado durante 20 minutos a partir de um reator de Corona. Os frutos foram armazenados a 4 ° C, por períodos de 5, 10 e 15 dias. A qualidade dos frutos foi relata a partir dos níveis de sólidos solúveis totais (SS), acidez titulável (AT ), pH, compostos fenólicos (CF), ácido ascórbico (AA), perda de massa fresca (PM%) e análise microbiológica (AM), em diferentes tempos de armazenamento de frutos ozonizados e não ozonizados. O uso de gás ozônio foi eficiente para a pós-colheita de morango. Os níveis de microrganismos estão dentro dos limites aceitáveis e as propriedades físicas e químicas foram mantidas.
Resumo:
This paper deals with the structural properties of a-Si:H/a-Si1-xCx: H multilayers deposited by glow-discharge decomposition of SiH4 and SiH4 and CH4 mixtures. The main feature of the rf plasma reactor is an automated substrate holder. The plasma stabilization time and its influence on the multilayer obtained is discussed. A series of a-Si:H/a-Si1-xCx: H multilayers has been deposited and characterized by secondary ion mass spectrometry (SIMS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). No asymmetry between the two types of interface has been observed. The results show that the multilayers present a very good periodicity and low roughness. The difficulty of determining the abruptness of the multilayer at the nanometer scale is discussed.