971 resultados para AGE ESTIMATION
Resumo:
The contemporary methodology for growth models of organisms is based on continuous trajectories and thus it hinders us from modelling stepwise growth in crustacean populations. Growth models for fish are normally assumed to follow a continuous function, but a different type of model is needed for crustacean growth. Crustaceans must moult in order for them to grow. The growth of crustaceans is a discontinuous process due to the periodical shedding of the exoskeleton in moulting. The stepwise growth of crustaceans through the moulting process makes the growth estimation more complex. Stochastic approaches can be used to model discontinuous growth or what are commonly known as "jumps" (Figure 1). However, in stochastic growth model we need to ensure that the stochastic growth model results in only positive jumps. In view of this, we will introduce a subordinator that is a special case of a Levy process. A subordinator is a non-decreasing Levy process, that will assist in modelling crustacean growth for better understanding of the individual variability and stochasticity in moulting periods and increments. We develop the estimation methods for parameter estimation and illustrate them with the help of a dataset from laboratory experiments. The motivational dataset is from the ornate rock lobster, Panulirus ornatus, which can be found between Australia and Papua New Guinea. Due to the presence of sex effects on the growth (Munday et al., 2004), we estimate the growth parameters separately for each sex. Since all hard parts are shed too often, the exact age determination of a lobster can be challenging. However, the growth parameters for the aforementioned moult processes from tank data being able to estimate through: (i) inter-moult periods, and (ii) moult increment. We will attempt to derive a joint density, which is made up of two functions: one for moult increments and the other for time intervals between moults. We claim these functions are conditionally independent given pre-moult length and the inter-moult periods. The variables moult increments and inter-moult periods are said to be independent because of the Markov property or conditional probability. Hence, the parameters in each function can be estimated separately. Subsequently, we integrate both of the functions through a Monte Carlo method. We can therefore obtain a population mean for crustacean growth (e. g. red curve in Figure 1). [GRAPHICS]
Resumo:
Rank-based inference is widely used because of its robustness. This article provides optimal rank-based estimating functions in analysis of clustered data with random cluster effects. The extensive simulation studies carried out to evaluate the performance of the proposed method demonstrate that it is robust to outliers and is highly efficient given the existence of strong cluster correlations. The performance of the proposed method is satisfactory even when the correlation structure is misspecified, or when heteroscedasticity in variance is present. Finally, a real dataset is analyzed for illustration.
Resumo:
We consider estimating the total load from frequent flow data but less frequent concentration data. There are numerous load estimation methods available, some of which are captured in various online tools. However, most estimators are subject to large biases statistically, and their associated uncertainties are often not reported. This makes interpretation difficult and the estimation of trends or determination of optimal sampling regimes impossible to assess. In this paper, we first propose two indices for measuring the extent of sampling bias, and then provide steps for obtaining reliable load estimates that minimizes the biases and makes use of informative predictive variables. The key step to this approach is in the development of an appropriate predictive model for concentration. This is achieved using a generalized rating-curve approach with additional predictors that capture unique features in the flow data, such as the concept of the first flush, the location of the event on the hydrograph (e.g. rise or fall) and the discounted flow. The latter may be thought of as a measure of constituent exhaustion occurring during flood events. Forming this additional information can significantly improve the predictability of concentration, and ultimately the precision with which the pollutant load is estimated. We also provide a measure of the standard error of the load estimate which incorporates model, spatial and/or temporal errors. This method also has the capacity to incorporate measurement error incurred through the sampling of flow. We illustrate this approach for two rivers delivering to the Great Barrier Reef, Queensland, Australia. One is a data set from the Burdekin River, and consists of the total suspended sediment (TSS) and nitrogen oxide (NO(x)) and gauged flow for 1997. The other dataset is from the Tully River, for the period of July 2000 to June 2008. For NO(x) Burdekin, the new estimates are very similar to the ratio estimates even when there is no relationship between the concentration and the flow. However, for the Tully dataset, by incorporating the additional predictive variables namely the discounted flow and flow phases (rising or recessing), we substantially improved the model fit, and thus the certainty with which the load is estimated.
Resumo:
Previous studies have shown that the external growth records of the posterior adductor muscle scar (PAMS) of the bivalve Pinna nobilis are incomplete and do not produce accurate age estimations. We have developed a new methodology to study age and growth using the inner record of the PAMS, which avoids the necessity of costly in situ shell measurements or isotopic studies. Using the inner record we identified the positions of PAMS previously obscured by nacre and estimated the number of missing records in adult specimens with strong abrasion of the calcite layer in the anterior portion of the shell. The study of the PAMS and inner record of two shells that were 6 years old when collected showed that only 2 and 3 PAMS were observed, while 6 inner records could be counted, thus confirming our working methodology. Growth parameters of a P. nobilis population located in Moraira, Spain (western Mediterranean) were estimated with the new methodology and compared to those obtained using PAMS data and in situ measurements. For the comparisons, we applied different models considering the data alternatively as length-at-age (LA) and tag-recapture (TR). Among every method we tested to fit the Von Bertalanffy growth model, we observed that LA data from inner record fitted to the model using non-linear mixed effects and the estimation of missing records using the calcite width was the most appropriate. The equation obtained with this method, L = 573*(1 - e(-0.16(t-0.02))), is very similar to that calculated previously from in situ measurements for the same population.
Resumo:
The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.
Resumo:
Despite great advances in very large scale integrated-circuit design and manufacturing, performance of even the best available high-speed, high-resolution analog-to-digital converter (ADC) is known to deteriorate while acquiring fast-rising, high-frequency, and nonrepetitive waveforms. Waveform digitizers (ADCs) used in high-voltage impulse recordings and measurements are invariably subjected to such waveforms. Errors resulting from a lowered ADC performance can be unacceptably high, especially when higher accuracies have to be achieved (e.g., when part of a reference measuring system). Static and dynamic nonlinearities (estimated independently) are vital indices for evaluating performance and suitability of ADCs to be used in such environments. Typically, the estimation of static nonlinearity involves 10-12 h of time or more (for a 12-b ADC) and the acquisition of millions of samples at high input frequencies for dynamic characterization. ADCs with even higher resolution and faster sampling speeds will soon become available. So, there is a need to reduce testing time for evaluating these parameters. This paper proposes a novel and time-efficient method for the simultaneous estimation of static and dynamic nonlinearity from a single test. This is achieved by conceiving a test signal, comprised of a high-frequency sinusoid (which addresses dynamic assessment) modulated by a low-frequency ramp (relevant to the static part). Details of implementation and results on two digitizers are presented and compared with nonlinearities determined by the existing standardized approaches. Good agreement in results and time savings achievable indicates its suitability.
Resumo:
Gulland's [Gulland, J.A., 1965. Estimation of mortality rates. Annex to Arctic Fisheries Working Group Report (meeting in Hamburg, January 1965). ICES. C.M. 1965, Doc. No. 3 (mimeographed)] virtual population analysis (VPA) is commonly used for studying the dynamics of harvested fish populations. However, it necessitates the solving of a nonlinear equation for the instantaneous rate of fishing mortality of the fish in a population. Pope [Pope, J.G., 1972. An investigation of the accuracy of Virtual Population Analysis using cohort analysis. ICNAF Res. Bull. 9, 65-74. Also available in D.H. Cushing (ed.) (1983), Key Papers on Fish Populations, p. 291-301, IRL Press, Oxford, 405 p.] eliminated this necessity in his cohort analysis by approximating its underlying age- and time-dependent population model. His approximation has since become one of the most commonly used age- and time-dependent fish population models in fisheries science. However, some of its properties are not well understood. For example, many assert that it describes the dynamics of a fish population, from which the catch of fish is taken instantaneously in the middle of the year. Such an assertion has never been proven, nor has its implied instantaneous rate of fishing mortality of the fish of a particular age at a particular time been examined, nor has its implied catch equation been derived from a general catch equation. In this paper, we prove this assertion, examine its implied instantaneous rate of fishing mortality of the fish of a particular age at a particular time, derive its implied catch equation from a general catch equation, and comment on how to structure an age- and time-dependent population model to ensure its internal consistency. This work shows that Gulland's (1965) virtual population analysis and Pope's (1972) cohort analysis lie at the opposite end of a continuous spectrum as a general model for a seasonally occurring fishery; Pope's (1972) approximation implies an infinitely large instantaneous rate of fishing mortality of the fish of a particular age at a particular time in a fishing season of zero length; and its implied catch equation has an undefined instantaneous rate of fishing mortality of the fish in a population, but a well-defined cumulative instantaneous rate of fishing mortality of the fish in the population. This work also highlights a need for a more careful treatment of the times of start and end of a fishing season in fish population models.
Resumo:
Consider a general regression model with an arbitrary and unknown link function and a stochastic selection variable that determines whether the outcome variable is observable or missing. The paper proposes U-statistics that are based on kernel functions as estimators for the directions of the parameter vectors in the link function and the selection equation, and shows that these estimators are consistent and asymptotically normal.
Resumo:
The Fabens method is commonly used to estimate growth parameters k and l infinity in the von Bertalanffy model from tag-recapture data. However, the Fabens method of estimation has an inherent bias when individual growth is variable. This paper presents an asymptotically unbiassed method using a maximum likelihood approach that takes account of individual variability in both maximum length and age-at-tagging. It is assumed that each individual's growth follows a von Bertalanffy curve with its own maximum length and age-at-tagging. The parameter k is assumed to be a constant to ensure that the mean growth follows a von Bertalanffy curve and to avoid overparameterization. Our method also makes more efficient use nf thp measurements at tno and recapture and includes diagnostic techniques for checking distributional assumptions. The method is reasonably robust and performs better than the Fabens method when individual growth differs from the von Bertalanffy relationship. When measurement error is negligible, the estimation involves maximizing the profile likelihood of one parameter only. The method is applied to tag-recapture data for the grooved tiger prawn (Penaeus semisulcatus) from the Gulf of Carpentaria, Australia.
Resumo:
Estimation of von Bertalanffy growth parameters has received considerable attention in fisheries research. Since Sainsbury (1980, Can. J. Fish. Aquat. Sci. 37: 241-247) much of this research effort has centered on accounting for individual variability in the growth parameters. In this paper we demonstrate that, in analysis of tagging data, Sainsbury's method and its derivatives do not, in general, satisfactorily account for individual variability in growth, leading to inconsistent parameter estimates (the bias does not tend to zero as sample size increases to infinity). The bias arises because these methods do not use appropriate conditional expectations as a basis for estimation. This bias is found to be similar to that of the Fabens method. Such methods would be appropriate only under the assumption that the individual growth parameters that generate the growth increment were independent of the growth parameters that generated the initial length. However, such an assumption would be unrealistic. The results are derived analytically, and illustrated with a simulation study. Until techniques that take full account of the appropriate conditioning have been developed, the effect of individual variability on growth has yet to be fully understood.
Resumo:
We propose a simple method of constructing quasi-likelihood functions for dependent data based on conditional-mean-variance relationships, and apply the method to estimating the fractal dimension from box-counting data. Simulation studies were carried out to compare this method with the traditional methods. We also applied this technique to real data from fishing grounds in the Gulf of Carpentaria, Australia
Resumo:
Robust estimation often relies on a dispersion function that is more slowly varying at large values than the square function. However, the choice of tuning constant in dispersion functions may impact the estimation efficiency to a great extent. For a given family of dispersion functions such as the Huber family, we suggest obtaining the "best" tuning constant from the data so that the asymptotic efficiency is maximized. This data-driven approach can automatically adjust the value of the tuning constant to provide the necessary resistance against outliers. Simulation studies show that substantial efficiency can be gained by this data-dependent approach compared with the traditional approach in which the tuning constant is fixed. We briefly illustrate the proposed method using two datasets.
Resumo:
The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow. Since the MFD represents the area-wide network traffic performance, studies on perimeter control strategies and network-wide traffic state estimation utilising the MFD concept have been reported. Most previous works have utilised data from fixed sensors, such as inductive loops, to estimate the MFD, which can cause biased estimation in urban networks due to queue spillovers at intersections. To overcome the limitation, recent literature reports the use of trajectory data obtained from probe vehicles. However, these studies have been conducted using simulated datasets; limited works have discussed the limitations of real datasets and their impact on the variable estimation. This study compares two methods for estimating traffic state variables of signalised arterial sections: a method based on cumulative vehicle counts (CUPRITE), and one based on vehicles’ trajectory from taxi Global Positioning System (GPS) log. The comparisons reveal some characteristics of taxi trajectory data available in Brisbane, Australia. The current trajectory data have limitations in quantity (i.e., the penetration rate), due to which the traffic state variables tend to be underestimated. Nevertheless, the trajectory-based method successfully captures the features of traffic states, which suggests that the trajectories from taxis can be a good estimator for the network-wide traffic states.
Resumo:
The method of generalised estimating equations for regression modelling of clustered outcomes allows for specification of a working matrix that is intended to approximate the true correlation matrix of the observations. We investigate the asymptotic relative efficiency of the generalised estimating equation for the mean parameters when the correlation parameters are estimated by various methods. The asymptotic relative efficiency depends on three-features of the analysis, namely (i) the discrepancy between the working correlation structure and the unobservable true correlation structure, (ii) the method by which the correlation parameters are estimated and (iii) the 'design', by which we refer to both the structures of the predictor matrices within clusters and distribution of cluster sizes. Analytical and numerical studies of realistic data-analysis scenarios show that choice of working covariance model has a substantial impact on regression estimator efficiency. Protection against avoidable loss of efficiency associated with covariance misspecification is obtained when a 'Gaussian estimation' pseudolikelihood procedure is used with an AR(1) structure.
Resumo:
We consider estimation of mortality rates and growth parameters from length-frequency data of a fish stock when there is individual variability in the von Bertalanffy growth parameter L-infinity and investigate the possible bias in the estimates when the individual variability is ignored. Three methods are examined: (i) the regression method based on the Beverton and Holt's (1956, Rapp. P.V. Reun. Cons. Int. Explor. Mer, 140: 67-83) equation; (ii) the moment method of Powell (1979, Rapp. PV. Reun. Int. Explor. Mer, 175: 167-169); and (iii) a generalization of Powell's method that estimates the individual variability to be incorporated into the estimation. It is found that the biases in the estimates from the existing methods are, in general, substantial, even when individual variability in growth is small and recruitment is uniform, and the generalized method performs better in terms of bias but is subject to a larger variation. There is a need to develop robust and flexible methods to deal with individual variability in the analysis of length-frequency data.