965 resultados para A posteriori error estimation
Resumo:
Real time glycemia is a cornerstone for metabolic research, particularly when performing oral glucose tolerance tests (OGTT) or glucose clamps. From 1965 to 2009, the gold standard device for real time plasma glucose assessment was the Beckman glucose analyzer 2 (Beckman Instruments, Fullerton, CA), which technology couples glucose oxidase enzymatic assay with oxygen sensors. Since its discontinuation in 2009, today's researchers are left with few choices that utilize glucose oxidase technology. The first one is the YSI 2300 (Yellow Springs Instruments Corp., Yellow Springs, OH), known to be as accurate as the Beckman(1). The YSI has been used extensively for clinical research studies and is used to validate other glucose monitoring devices(2). The major drawback of the YSI is that it is relatively slow and requires high maintenance. The Analox GM9 (Analox instruments, London), more recent and faster, is increasingly used in clinical research(3) as well as in basic sciences(4) (e.g. 23 papers in Diabetes or 21 in Diabetologia). This article is protected by copyright. All rights reserved.
Resumo:
Abstract
Resumo:
Selostus: Ravikilpailumenestysmittojen periytymisasteet ja toistumiskertoimet kilpailukohtaisten tulosten perusteella
Resumo:
The purpose of this bachelor's thesis was to chart scientific research articles to present contributing factors to medication errors done by nurses in a hospital setting, and introduce methods to prevent medication errors. Additionally, international and Finnish research was combined and findings were reflected in relation to the Finnish health care system. Literature review was conducted out of 23 scientific articles. Data was searched systematically from CINAHL, MEDIC and MEDLINE databases, and also manually. Literature was analysed and the findings combined using inductive content analysis. Findings revealed that both organisational and individual factors contributed to medication errors. High workload, communication breakdowns, unsuitable working environment, distractions and interruptions, and similar medication products were identified as organisational factors. Individual factors included nurses' inability to follow protocol, inadequate knowledge of medications and personal qualities of the nurse. Developing and improving the physical environment, error reporting, and medication management protocols were emphasised as methods to prevent medication errors. Investing to the staff's competence and well-being was also identified as a prevention method. The number of Finnish articles was small, and therefore the applicability of the findings to Finland is difficult to assess. However, the findings seem to fit to the Finnish health care system relatively well. Further research is needed to identify those factors that contribute to medication errors in Finland. This is a necessity for the development of methods to prevent medication errors that fit in to the Finnish health care system.
Resumo:
Voltage fluctuations caused by parasitic impedances in the power supply rails of modern ICs are a major concern in nowadays ICs. The voltage fluctuations are spread out to the diverse nodes of the internal sections causing two effects: a degradation of performances mainly impacting gate delays anda noisy contamination of the quiescent levels of the logic that drives the node. Both effects are presented together, in thispaper, showing than both are a cause of errors in modern and future digital circuits. The paper groups both error mechanismsand shows how the global error rate is related with the voltage deviation and the period of the clock of the digital system.
Resumo:
This paper presents a probabilistic approach to model the problem of power supply voltage fluctuations. Error probability calculations are shown for some 90-nm technology digital circuits.The analysis here considered gives the timing violation error probability as a new design quality factor in front of conventional techniques that assume the full perfection of the circuit. The evaluation of the error bound can be useful for new design paradigms where retry and self-recoveringtechniques are being applied to the design of high performance processors. The method here described allows to evaluate the performance of these techniques by means of calculating the expected error probability in terms of power supply distribution quality.
Resumo:
This paper deals with the goodness of the Gaussian assumption when designing second-order blind estimationmethods in the context of digital communications. The low- andhigh-signal-to-noise ratio (SNR) asymptotic performance of the maximum likelihood estimator—derived assuming Gaussiantransmitted symbols—is compared with the performance of the optimal second-order estimator, which exploits the actualdistribution of the discrete constellation. The asymptotic study concludes that the Gaussian assumption leads to the optimalsecond-order solution if the SNR is very low or if the symbols belong to a multilevel constellation such as quadrature-amplitudemodulation (QAM) or amplitude-phase-shift keying (APSK). On the other hand, the Gaussian assumption can yield importantlosses at high SNR if the transmitted symbols are drawn from a constant modulus constellation such as phase-shift keying (PSK)or continuous-phase modulations (CPM). These conclusions are illustrated for the problem of direction-of-arrival (DOA) estimation of multiple digitally-modulated signals.
Resumo:
This paper presents a Bayesian approach to the design of transmit prefiltering matrices in closed-loop schemes robust to channel estimation errors. The algorithms are derived for a multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system. Two different optimizationcriteria are analyzed: the minimization of the mean square error and the minimization of the bit error rate. In both cases, the transmitter design is based on the singular value decomposition (SVD) of the conditional mean of the channel response, given the channel estimate. The performance of the proposed algorithms is analyzed,and their relationship with existing algorithms is indicated. As withother previously proposed solutions, the minimum bit error rate algorithmconverges to the open-loop transmission scheme for very poor CSI estimates.
Resumo:
This paper analyzes the asymptotic performance of maximum likelihood (ML) channel estimation algorithms in wideband code division multiple access (WCDMA) scenarios. We concentrate on systems with periodic spreading sequences (period larger than or equal to the symbol span) where the transmitted signal contains a code division multiplexed pilot for channel estimation purposes. First, the asymptotic covariances of the training-only, semi-blind conditional maximum likelihood (CML) and semi-blind Gaussian maximum likelihood (GML) channelestimators are derived. Then, these formulas are further simplified assuming randomized spreading and training sequences under the approximation of high spreading factors and high number of codes. The results provide a useful tool to describe the performance of the channel estimators as a function of basicsystem parameters such as number of codes, spreading factors, or traffic to training power ratio.
Resumo:
In this paper, the theory of hidden Markov models (HMM) isapplied to the problem of blind (without training sequences) channel estimationand data detection. Within a HMM framework, the Baum–Welch(BW) identification algorithm is frequently used to find out maximum-likelihood (ML) estimates of the corresponding model. However, such a procedureassumes the model (i.e., the channel response) to be static throughoutthe observation sequence. By means of introducing a parametric model fortime-varying channel responses, a version of the algorithm, which is moreappropriate for mobile channels [time-dependent Baum-Welch (TDBW)] isderived. Aiming to compare algorithm behavior, a set of computer simulationsfor a GSM scenario is provided. Results indicate that, in comparisonto other Baum–Welch (BW) versions of the algorithm, the TDBW approachattains a remarkable enhancement in performance. For that purpose, onlya moderate increase in computational complexity is needed.
Resumo:
This paper is concerned with the derivation of new estimators and performance bounds for the problem of timing estimation of (linearly) digitally modulated signals. The conditional maximum likelihood (CML) method is adopted, in contrast to the classical low-SNR unconditional ML (UML) formulationthat is systematically applied in the literature for the derivationof non-data-aided (NDA) timing-error-detectors (TEDs). A new CML TED is derived and proved to be self-noise free, in contrast to the conventional low-SNR-UML TED. In addition, the paper provides a derivation of the conditional Cramér–Rao Bound (CRB ), which is higher (less optimistic) than the modified CRB (MCRB)[which is only reached by decision-directed (DD) methods]. It is shown that the CRB is a lower bound on the asymptotic statisticalaccuracy of the set of consistent estimators that are quadratic with respect to the received signal. Although the obtained boundis not general, it applies to most NDA synchronizers proposed in the literature. A closed-form expression of the conditional CRBis obtained, and numerical results confirm that the CML TED attains the new bound for moderate to high Eg/No.
Resumo:
In this correspondence, we propose applying the hiddenMarkov models (HMM) theory to the problem of blind channel estimationand data detection. The Baum–Welch (BW) algorithm, which is able toestimate all the parameters of the model, is enriched by introducingsome linear constraints emerging from a linear FIR hypothesis on thechannel. Additionally, a version of the algorithm that is suitable for timevaryingchannels is also presented. Performance is analyzed in a GSMenvironment using standard test channels and is found to be close to thatobtained with a nonblind receiver.
Resumo:
A comparative performance analysis of four geolocation methods in terms of their theoretical root mean square positioning errors is provided. Comparison is established in two different ways: strict and average. In the strict type, methods are examined for a particular geometric configuration of base stations(BSs) with respect to mobile position, which determines a givennoise profile affecting the respective time-of-arrival (TOA) or timedifference-of-arrival (TDOA) estimates. In the average type, methodsare evaluated in terms of the expected covariance matrix ofthe position error over an ensemble of random geometries, so thatcomparison is geometry independent. Exact semianalytical equationsand associated lower bounds (depending solely on the noiseprofile) are obtained for the average covariance matrix of the positionerror in terms of the so-called information matrix specific toeach geolocation method. Statistical channel models inferred fromfield trials are used to define realistic prior probabilities for therandom geometries. A final evaluation provides extensive resultsrelating the expected position error to channel model parametersand the number of base stations.
Resumo:
This paper addresses the estimation of the code-phase(pseudorange) and the carrier-phase of the direct signal received from a direct-sequence spread-spectrum satellite transmitter. Thesignal is received by an antenna array in a scenario with interferenceand multipath propagation. These two effects are generallythe limiting error sources in most high-precision positioning applications.A new estimator of the code- and carrier-phases is derivedby using a simplified signal model and the maximum likelihood(ML) principle. The simplified model consists essentially ofgathering all signals, except for the direct one, in a component withunknown spatial correlation. The estimator exploits the knowledgeof the direction-of-arrival of the direct signal and is much simplerthan other estimators derived under more detailed signal models.Moreover, we present an iterative algorithm, that is adequate for apractical implementation and explores an interesting link betweenthe ML estimator and a hybrid beamformer. The mean squarederror and bias of the new estimator are computed for a numberof scenarios and compared with those of other methods. The presentedestimator and the hybrid beamforming outperform the existingtechniques of comparable complexity and attains, in manysituations, the Cramér–Rao lower bound of the problem at hand.
Resumo:
This correspondence addresses the problem of nondata-aidedwaveform estimation for digital communications. Based on the unconditionalmaximum likelihood criterion, the main contribution of this correspondenceis the derivation of a closed-form solution to the waveform estimationproblem in the low signal-to-noise ratio regime. The proposed estimationmethod is based on the second-order statistics of the received signaland a clear link is established between maximum likelihood estimation andcorrelation matching techniques. Compression with the signal-subspace isalso proposed to improve the robustness against the noise and to mitigatethe impact of abnormals or outliers.