997 resultados para 339-U1387A
Resumo:
BACKGROUND: Cardiac surgery requiring cardiopulmonary bypass is associated with platelet activation. Because platelets are increasingly recognized as important effectors of ischemia and end-organ inflammatory injury, the authors explored whether postoperative nadir platelet counts are associated with acute kidney injury (AKI) and mortality after coronary artery bypass grafting (CABG) surgery. METHODS: The authors evaluated 4,217 adult patients who underwent CABG surgery. Postoperative nadir platelet counts were defined as the lowest in-hospital values and were used as a continuous predictor of postoperative AKI and mortality. Nadir values in the lowest 10th percentile were also used as a categorical predictor. Multivariable logistic regression and Cox proportional hazard models examined the association between postoperative platelet counts, postoperative AKI, and mortality. RESULTS: The median postoperative nadir platelet count was 121 × 10/l. The incidence of postoperative AKI was 54%, including 9.5% (215 patients) and 3.4% (76 patients) who experienced stages II and III AKI, respectively. For every 30 × 10/l decrease in platelet counts, the risk for postoperative AKI increased by 14% (adjusted odds ratio, 1.14; 95% CI, 1.09 to 1.20; P < 0.0001). Patients with platelet counts in the lowest 10th percentile were three times more likely to progress to a higher severity of postoperative AKI (adjusted proportional odds ratio, 3.04; 95% CI, 2.26 to 4.07; P < 0.0001) and had associated increased risk for mortality immediately after surgery (adjusted hazard ratio, 5.46; 95% CI, 3.79 to 7.89; P < 0.0001). CONCLUSION: The authors found a significant association between postoperative nadir platelet counts and AKI and short-term mortality after CABG surgery.
Resumo:
© Emerald Group Publishing Limited.Purpose – The purpose of this paper is to introduce the global value chain (GVC) approach to understand the relationship between multinational enterprises (MNEs) and the changing patterns of global trade, investment and production, and its impact on economic and social upgrading. It aims to illuminate how GVCs can advance our understanding about MNEs and rising power (RP) firms and their impact on economic and social upgrading in fragmented and dispersed global production systems. Design/methodology/approach – The paper reviews theGVCliterature focusing on two conceptual elements of the GVC approach, governance and upgrading, and highlights three key recent developments in GVCs: concentration, regionalization and synergistic governance. Findings – The paper underscores the complicated role of GVCs in shaping economic and social upgrading for emerging economies, RP firms and developing country firms in general. Rising geographic and organizational concentration in GVCs leads to the uneven distribution of upgrading opportunities in favor of RP firms, and yet economic upgrading may be elusive even for the most established suppliers because of power asymmetry with global buyers. Shifting end markets and the regionalization of value chains can benefit RP firms by presenting alternative markets for upgrading. Yet, without further upgrading, such benefits may be achieved at the expense of social downgrading. Finally, the ineffectiveness of private standards to achieve social upgrading has led to calls for synergistic governance through the cooperation of private, public and social actors, both global and local. Originality/value – The paper illuminates how the GVC approach and its key concepts can contribute to the critical international business and RP firms literature by examining the latest dynamics in GVCs and their impacts on economic and social development in developing countries.
Resumo:
En este trabajo resumimos algunas reflexiones sobre el papel que pueden desarrollar la tecnología en el estudio de sistemas semióticos de representación, y que constituyen el núcleo para la comprensión de los procesos de construcción del conocimiento matemático de los estudiantes. La cita corresponde con el resumen de una página publicado.
Resumo:
En este trabajo mostramos el potencial de los grafos trinomiales como herramienta para el análisis de las resoluciones de problemas ternarios de probabilidad condicional. Mostramos el análisis de dos resoluciones correspondientes a sendos estudiantes de 4o de ESO resolviendo un problema de probabilidad condicional de nivel N0.
Resumo:
Quasi-Newton methods are applied to solve interface problems which arise from domain decomposition methods. These interface problems are usually sparse systems of linear or nonlinear equations. We are interested in applying these methods to systems of linear equations where we are not able or willing to calculate the Jacobian matrices as well as to systems of nonlinear equations resulting from nonlinear elliptic problems in the context of domain decomposition. Suitability for parallel implementation of these algorithms on coarse-grained parallel computers is discussed.
Resumo:
The future of many companies will depend to a large extent on their ability to initiate techniques that bring schedules, performance, tests, support, production, life-cycle-costs, reliability prediction and quality control into the earliest stages of the product creation process. Important questions for an engineer who is responsible for the quality of electronic parts such as printed circuit boards (PCBs) during design, production, assembly and after-sales support are: What is the impact of temperature? What is the impact of this temperature on the stress produced in the components? What is the electromagnetic compatibility (EMC) associated with such a design? At present, thermal, stress and EMC calculations are undertaken using different software tools that each require model build and meshing. This leads to a large investment in time, and hence cost, to undertake each of these simulations. This paper discusses the progression towards a fully integrated software environment, based on a common data model and user interface, having the capability to predict temperature, stress and EMC fields in a coupled manner. Such a modelling environment used early within the design stage of an electronic product will provide engineers with fast solutions to questions regarding thermal, stress and EMC issues. The paper concentrates on recent developments in creating such an integrated modeling environment with preliminary results from the analyses conducted. Further research into the thermal and stress related aspects of the paper is being conducted under a nationally funded project, while their application in reliability prediction will be addressed in a new European project called PROFIT.
Resumo:
In the current paper, the authors present an analysis of the structural characteristics of an intermediate rail vehicle and their effects on crash performance of the vehicle. Theirs is a simulation based analysis involving four stages. First, the crashworthiness of the vehicle is assessed by simulating an impact of the vehicle with a rigid wall. Second, the structural characteristics of the vehicle are analysed based on the structural behaviour during this impact and then the structure is modified. Third, the modified vehicle is tested again in the same impact scenario with a rigid wall. Finally, the modified vehicle is subjected to a modelled head-on impact which mirrors the real-life impact interface between two intermediate vehicles in a train impact. The emphasis of the current study is on the structural characteristics of the intermediate vehicle and the differences compared to an impact of a leading vehicle. The study shows that, similar to a leading vehicle, bending, or jackknifing is a main form of failure in this conventionally designed intermediate vehicle. It has also been found that the location of the door openings creates a major difference in the behaviour of an intermediate vehicle. It causes instability of the vehicle in the door area and leads to high stresses at the joint of the end beam with the solebar and shear stresses at the joint of the inner pillar with the cantrail. Apart from this, the shapes of the vehicle ends and impact interfaces are also different and have an effect on the crash performance of the vehicles. The simulation results allow the identification of the structural characteristics and show the effectiveness of relevant modifications. The conclusions have general relevance for the crashworthiness of rail vehicle design