942 resultados para 2,4-D, morning glory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We thank European Commission (project “PET BRAIN: Mapping the brain with PET radiolabeled cannabinoid CB1 ligands”; FP7-People-2009-IAPP; Grant Agreement N.25142).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wurden selektive Inhibitoren der Glutathion-Transferase P1 (GSTP1) mit 1,2,4-Trioxanstruktur als potentielle Wirkstoffe gegen multiresistente Tumore synthetisiert. Die Darstellung dieser Substanzen erfolgte über Typ-II-Photooxygenierung allylischer Alkohole mit anschließender Säure-katalysierter Peroxyacetalisierung unter Verwendung von 4-Nitrobenzaldehyd. Über diesen Syntheseweg konnten unterschiedlich substituierte 1,2,4-Trioxane dargestellt werden. Die höchste biologische Aktivität zeigten Verbindungen mit aromatischen Estersubstituenten am 1,2,4-Trioxanring. Es wurde eine Leitstruktur entwickelt, die einen α,β-ungesättigten aromatischen Estersubstituenten in Position 6 des 1,2,4-Trioxangerüsts und in Position 3 einen 4-Nitrophenylsubstituenten aufweist. Die Verbindungen dieser Substanzklasse zeigen Inhibition der GSTP1 im niedrig mikromolaren Bereich. Durch Aktivitätsstudien an den GST-Klassen A und M konnte gezeigt werden, dass die Verbindungen selektiv GSTP1 inhibieren. Nachdem mittels quantitativer PCR 12 Krebszelllinien, die hohe GSTP1-Expressionsniveaus zeigen, identifiziert worden waren, wurde die Aktivität der 1,2,4-Trioxane gegenüber GST, die in Krebszelllysaten vorkommt, nachgewiesen. Die GST in der Brustkrebsepithelzelllinie HBL100 und der Lungenkarzinomzelllinie SK-MES-1 wird durch 1,2,4-Trioxane noch effektiver inhibiert als aufgereinigte GSTP1 (IC50 im nanomolaren Bereich).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Squeeze and photograph

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photograph and notes by A.E. Gordon

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1,2,4,5-Tetrazines are six-membered heterocyclic compounds in which the four nitrogen atoms are displayed in a symmetric fashion. Their reactivity is quite different from other heterocyclic aromatic systems due to its unique electron-withdrawing character, comparable to tetra-nitrobenzene. 1 In particular, 1,2,4,5- tetrazines are known to take part in [4+2] inverse-Diels–Alder cycloaddition processes which efficiently lead to the construction of substituted pyridazine systems that are important in drug development and biomarker applications. 2 However, the electronic character of 1,2,4,5-tetrazines hampered the development of 3- ethynyl- and 3,6-diethynyl-1,2,4,5-tetrazine derivatives for molecular electronic applications, proved by the scarcity of examples found in the literature. 3 Herein, we describe the synthesis and characterization of two novel ethynyl-based 1,2,4,5-tetrazine derivatives. Synthesis of 3,6-(4-bromophenyl)-1,2,4,5-tetrazine precursor (1) was achieved in good yield by Pinner’s method, starting from 4-bromobenzonitrile. Despite its low solubility in common organic solvents, this precursor was found to react smoothly under typical Sonogashira coupling conditions to selectively afford the 3-ethynyl (2) and 3,6-diethynyl (3) protected derivatives (Figure 1). Reaction conditions were evaluated in order to provide the best yields and to promote selectivity of the mono- or disubstituted ethynyl derivatives. Finally, deprotection was achieved affording, in the case of compound 3, an unprecedented 3,6- diethynyl-1,2,4,5-tetrazine compound. Time-Dependent Density Functional Theory (TDDFT) calculations for both deprotected ethynyl derivatives were used to simulate electronic spectra. A deep knowledge of the relevant electronic transitions involved and quantitatively satisfactory results of the calculated electronic excitations in comparison with experimental data were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Callus was initiated in three different ‘‘esculenta’’ taro cultivars by culturing corm slices in the dark on half-strength MS medium supplemented with 2.0 mg/l 2,4- dichlorophenoxyacetic acid (2,4-D) for 20 days followed by subculture of all corm slices to half-strength MS medium containing 1.0 mg/l thidiazuron (TDZ). Depending on the cultivar, 20–30% of corm slices produced compact, yellow, nodular callus on media containing TDZ. Histological studies revealed the presence of typical embryogenic cells which were small, isodiametric with dense cytoplasms. Somatic embryos formed when callus was transferred to hormone-free medium and *72% of the embryos germinated into plantlets on this medium. Simultaneous formation of roots and shoots during germination, and the presence of shoot and root poles revealed by histology, confirmed that these structures were true somatic embryos. Plants derived from somatic embryos appeared phenotypically normal following 2 months growth in a glasshouse. This method is a significant advance on those previously reported for the esculenta cultivars of taro due to its efficiency and reproducibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Embryogenic callus was initiated by culturing in vitro taro corm slices on agar-solidified half-strength MS medium containing 2.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) for 20 days followed by transfer to 1.0 mg/L thidiazuron (TDZ). Callus was subsequently proliferated on solid medium containing 1.0 mg/L TDZ, 0.5 mg/L 2,4- D and 800 mg/L glutamine before transfer to liquid medium containing the same components but with reduced glutamine (100 mg/L). After 3 months in liquid culture on an orbital shaker, cytoplasmically dense cell aggregates began to form. Somatic embryogenesis was induced by plating suspension cells onto solid media containing reduced levels of hormones (0.1 mg/L TDZ, 0.05 mg/L 2,4-D), high concentrations of sucrose (40–50 g/L) and biotin (1.0 mg/L). Embryo maturation and germination was then induced on media containing 0.05 mg/L benzyladenine (BA) and 0.1 mg/L indole-3-acetic acid (IAA). Histological studies of the developing embryos revealed the presence of typical shoot and root poles suggesting that these structures were true somatic embryos. The rate of somatic embryos formation was 500–3,000 per mL settledcell volume while approximately 60% of the embryos regenerated into plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One approach to reducing the yield losses caused by banana viral diseases is the use of genetic engineering and pathogen-derived resistance strategies to generate resistant cultivars. The development of transgenic virus resistance requires an efficient banana transformation method, particularly for commercially important 'Cavendish' type cultivars such as 'Grand Nain'. Prior to this study, only two examples of the stable transformation of banana had been reported, both of which demonstrated the principle of transformation but did not characterise transgenic plants in terms of the efficiency at which individual transgenic lines were generated, relative activities of promoters in stably transformed plants, and the stability of transgene expression. The aim of this study was to develop more efficient transformation methods for banana, assess the activity of some commonly used and also novel promoters in stably transformed plants, and transform banana with genes that could potentially confer resistance to banana bunchy top nanovirus (BBTV) and banana bract mosaic potyvirus (BBrMV). A regeneration system using immature male flowers as the explant was established. The frequency of somatic embryogenesis in male flower explants was influenced by the season in which the inflorescences were harvested. Further, the media requirements of various banana cultivars in respect to the 2,4-D concentration in the initiation media also differed. Following the optimisation of these and other parameters, embryogenic cell suspensions of several banana (Musa spp.) cultivars including 'Grand Nain' (AAA), 'Williams' (AAA), 'SH-3362' (AA), 'Goldfinger' (AAAB) and 'Bluggoe' (ABB) were successfully generated. Highly efficient transformation methods were developed for both 'Bluggoe' and 'Grand Nain'; this is the first report of microprojectile bombardment transformation of the commercially important 'Grand Nain' cultivar. Following bombardment of embryogenic suspension cells, regeneration was monitored from single transfom1ed cells to whole plants using a reporter gene encoding the green fluorescent protein (gfp). Selection with kanamycin enabled the regeneration of a greater number of plants than with geneticin, while still preventing the regeneration of non-transformed plants. Southern hybridisation confirmed the neomycin phosphotransferase gene (npt II) was stably integrated into the banana genome and that multiple transgenic lines were derived from single bombardments. The activity, stability and tissue specificity of the cauliflower mosaic virus 358 (CaMV 35S) and maize polyubiquitin-1 (Ubi-1) promoters were examined. In stably transformed banana, the Ubi-1 promoter provided approximately six-fold higher p-glucuronidase (GUS) activity than the CaMV 35S promoter, and both promoters remained active in glasshouse grown plants for the six months they were observed. The intergenic regions ofBBTV DNA-I to -6 were isolated and fused to either the uidA (GUS) or gfjJ reporter genes to assess their promoter activities. BBTV promoter activity was detected in banana embryogenic cells using the gfp reporter gene. Promoters derived from BBTV DNA-4 and -5 generated the highest levels of transient activity, which were greater than that generated by the maize Ubi-1 promoter. In transgenic banana plants, the activity of the BBTV DNA-6 promoter (BT6.1) was restricted to the phloem of leaves and roots, stomata and root meristems. The activity of the BT6.1 promoter was enhanced by the inclusion of intron-containing fragments derived from the maize Ubi-1, rice Act-1, and sugarcane rbcS 5' untranslated regions in GUS reporter gene constructs. In transient assays in banana, the rice Act-1 and maize Ubi-1 introns provided the most significant enhancement, increasing expression levels 300-fold and 100-fold, respectively. The sugarcane rbcS intron increased expression about 10-fold. In stably transformed banana plants, the maize Ubi-1 intron enhanced BT6.1 promoter activity to levels similar to that of the CaMV 35S promoter, but did not appear to alter the tissue specificity of the promoter. Both 'Grand Nain' and 'Bluggoe' were transformed with constructs that could potentially confer resistance to BBTV and BBrMV, including constructs containing BBTV DNA-1 major and internal genes, BBTV DNA-5 gene, and the BBrMV coat protein-coding region all under the control of the Ubi-1 promoter, while the BT6 promoter was used to drive the npt II selectable marker gene. At least 30 transgenic lines containing each construct were identified and replicates of each line are currently being generated by micropropagation in preparation for virus challenge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-dimensional polymeric structures of the caesium complexes with the phenoxyacetic acid analogues (4-fluorophenoxy)acetic acid, (3-chloro-2-methylphenoxy)acetic acid and the herbicidally active (2,4-dichlorophen­oxy)acetic acid (2,4-D), namely poly[[5-(4-fluorophenoxy)acetato][4-(4-fluorophenoxy)acetato]dicaesium], [Cs2(C8H6FO3)2]n, (I), poly[aqua[5-(3-chloro-2-methylphenoxy)acetato]caesium], [Cs(C9H8ClO3)(H2O)]n, (II), and poly[[7-(2,4-di­chlorophenoxy)acetato][(2,4-dichlorphenoxy)acetic acid]caesium], [Cs(C8H5Cl2O3)(C8H6Cl2O3)]n, (III), are described. In (I), the Cs+ cations of the two individual irregular coordination polyhedra in the asymmetric unit (one CsO7 and the other CsO8) are linked by bridging carboxylate O-atom donors from the two ligand molecules, both of which are involved in bidentate chelate Ocarboxy,Ophenoxy interactions, while only one has a bidentate carboxylate O,O'-chelate inter­action. Polymeric extension is achieved through a number of carboxylate O-atom bridges, with a minimum CsCs separation of 4.3231 (9) Å, giving layers which lie parallel to (001). In hydrated complex (II), the irregular nine-coordination about the Cs+ cation comprises a single monodentate water molecule, a bidentate Ocarboxy,Ophenoxy chelate interaction and six bridging carboxylate O-atom bonding interactions, giving a CsCs separation of 4.2473 (3) Å. The water mol­ecule forms intralayer hydrogen bonds within the two-dimensional layers, which lie parallel to (100). In complex (III), the irregular centrosymmetric CsO6Cl2 coordination environment comprises two O-atom donors and two ring-substituted Cl-atom donors from two hydrogen bis[(2,4-dichlorophenoxy)acetate] ligand species in a bidentate chelate mode, and four O-atom donors from bridging carboxyl groups. The duplex ligand species lie across crystallographic inversion centres, linked through a short O-HO hydrogen bond involving the single acid H atom. Structure extension gives layers which lie parallel to (001). The present set of structures of Cs salts of phenoxyacetic acids show previously demonstrated trends among the alkali metal salts of simple benzoic acids with no stereochemically favourable interactive substituent groups for formation of two-dimensional coordination polymers.