931 resultados para wide genome sequencing
Resumo:
Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp), arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51). In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84) affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9%) of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits) during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies.
Resumo:
(Full text is available at http://www.manu.edu.mk/prilozi). New generation genomic platforms enable us to decipher the complex genetic basis of complex diseases and Balkan Endemic Nephropathy (BEN) at a high-throughput basis. They give valuable information about predisposing Single Nucleotide Polymorphisms (SNPs), Copy Number Variations (CNVs) or Loss of Heterozygosity (LOH) (using SNP-array) and about disease-causing mutations along the whole sequence of candidate-genes (using Next Generation Sequencing). This information could be used for screening of individuals in risk families and moving the main medicine stream to the prevention. They also might have an impact on more effective treatment. Here we discuss these genomic platforms and report some applications of SNP-array technology in a case with familial nephrotic syndrome. Key words: complex diseases, genome wide association studies, SNP, genomic arrays, next generation sequ-encing.
Resumo:
Stylonychia lemnae is a classical model single-celled eukaryote, and a quintessential ciliate typified by dimorphic nuclei: A small, germline micronucleus and a massive, vegetative macronucleus. The genome within Stylonychia's macronucleus has a very unusual architecture, comprised variably and highly amplified "nanochromosomes," each usually encoding a single gene with a minimal amount of surrounding noncoding DNA. As only a tiny fraction of the Stylonychia genes has been sequenced, and to promote research using this organism, we sequenced its macronuclear genome. We report the analysis of the 50.2-Mb draft S. lemnae macronuclear genome assembly, containing in excess of 16,000 complete nanochromosomes, assembled as less than 20,000 contigs. We found considerable conservation of fundamental genomic properties between S. lemnae and its close relative, Oxytricha trifallax, including nanochromosomal gene synteny, alternative fragmentation, and copy number. Protein domain searches in Stylonychia revealed two new telomere-binding protein homologs and the presence of linker histones. Among the diverse histone variants of S. lemnae and O. trifallax, we found divergent, coexpressed variants corresponding to four of the five core nucleosomal proteins (H1.2, H2A.6, H2B.4, and H3.7) suggesting that these ciliates may possess specialized nucleosomes involved in genome processing during nuclear differentiation. The assembly of the S. lemnae macronuclear genome demonstrates that largely complete, well-assembled highly fragmented genomes of similar size and complexity may be produced from one library and lane of Illumina HiSeq 2000 shotgun sequencing. The provision of the S. lemnae macronuclear genome sets the stage for future detailed experimental studies of chromatin-mediated, RNA-guided developmental genome rearrangements.
Resumo:
Despite the evidence for a genetic predisposition to develop equine sarcoids (ES), no whole genome scan for ES has been performed to date. The objective of this explorative study was to identify chromosome regions associated with ES. The studied population was comprised of two half-sibling sire families, involving a total of 222 horses. Twenty-six of these horses were affected with ES. All horses had been previously genotyped with 315 microsatellite markers. Quantitative trait locus (QTL) signals were suggested where the F statistic exceeded chromosome-wide significance at P < 0.05. The QTL analyses revealed significant signals reaching P < 0.05 on equine chromosome (ECA) 20, 23 and 25, suggesting a polygenic character for this trait. The candidate regions identified on ECA 20, 23 and 25 include genes regulating virus replication and host immune response. Further investigation of the chromosome regions associated with ES and of genes potentially responsible for the development of ES could form the basis for early identification of susceptible animals, breeding selection or the development of new therapeutic targets.
Resumo:
ALS is a neurodegenerative disease that specifically affects upper and lower motor neurons leading to progressive paralysis and death. There is currently no effective treatment. Thus, identification of the signaling pathways and cellular mediators of ALS remains a major challenge in the search for novel therapeutic approaches. Recent studies have shown that non-coding RNAs have a significant impact on normal CNS development and onset and progression of neurological disorders. Based on this evidence we specifically test the hypothesis that misregulation of miRNA expression is a common feature in familiar ALS. Hence, we are exploiting human neuroblastoma cell lines either expressing the SOD1(G93A) mutation or depleted from Fused in Sarcoma (FUS) as tools to investigate the role of miRNAs in familiar ALS. To this end we performed a genome-wide scale miRNA expression on these cells, using whole-genome small RNA deep-sequencing followed by quantitative real time validation (qPCR). This strategy allowed us to find a group of dysregulated miRNAs, which are predicted to play a role in the motorneurons physiology and pathology. We verified our data on cDNA derived from SOD1-ALS mice models at early stage of the disease and on cDNA derived from lymphocytes from a small group of ALS patients. In the future, we plan to define the mechanisms responsible for the miRNA dysregulation, by silencing or stimulating the signal transduction pathways putatively involved in miRNA expression and regulation.
Resumo:
The recent development of a goat SNP genotyping microarray enables genome-wide association studies in this important livestock species. We investigated the genetic basis of the black and brown coat colour in Valais Blacknecked and Coppernecked goats. A genome-wide association analysis using goat SNP50 BeadChip genotypes of 22 cases and 23 controls allowed us to map the locus for the brown coat colour to goat chromosome 8. The TYRP1 gene is located within the associated chromosomal region, and TYRP1 variants cause similar coat colour phenotypes in different species. We thus considered TYRP1 as a strong positional and functional candidate. We resequenced the caprine TYRP1 gene by Sanger and Illumina sequencing and identified two non-synonymous variants, p.Ile478Thr and p.Gly496Asp, that might have a functional impact on the TYRP1 protein. However, based on the obtained pedigree and genotype data, the brown coat colour in these goats is not due to a single recessive loss-of-function allele. Surprisingly, the genotype distribution and the pedigree data suggest that the (496) Asp allele might possibly act in a dominant manner. The (496) Asp allele was present in 77 of 81 investigated Coppernecked goats and did not occur in black goats. This strongly suggests heterogeneity underlying the brown coat colour in Coppernecked goats. Functional experiments or targeted matings will be required to verify the unexpected preliminary findings.
Resumo:
During the summer of 2013 seven Italian Tyrolean Grey calves were born with abnormally short limbs. Detailed clinical and pathological examination revealed similarities to chondrodysplastic dwarfism. Pedigree analysis showed a common founder, assuming autosomal monogenic recessive transmission of the defective allele. A positional cloning approach combining genome wide association and homozygosity mapping identified a single 1.6 Mb genomic region on BTA 6 that was associated with the disease. Whole genome re-sequencing of an affected calf revealed a single candidate causal mutation in the Ellis van Creveld syndrome 2 (EVC2) gene. This gene is known to be associated with chondrodysplastic dwarfism in Japanese Brown cattle, and dwarfism, abnormal nails and teeth, and dysostosis in humans with Ellis-van Creveld syndrome. Sanger sequencing confirmed the presence of a 2 bp deletion in exon 19 (c.2993_2994ACdel) that led to a premature stop codon in the coding sequence of bovine EVC2, and was concordant with the recessive pattern of inheritance in affected and carrier animals. This loss of function mutation confirms the important role of EVC2 in bone development. Genetic testing can now be used to eliminate this form of chondrodysplastic dwarfism from Tyrolean Grey cattle.
Resumo:
Canine transmissible venereal tumor (CTVT) is a parasitic cancer clone that has propagated for thousands of years via sexual transfer of malignant cells. Little is understood about the mechanisms that converted an ancient tumor into the world's oldest known continuously propagating somatic cell lineage. We created the largest existing catalog of canine genome-wide variation and compared it against two CTVT genome sequences, thereby separating alleles derived from the founder's genome from somatic drivers of clonal transmissibility. We show that CTVT has undergone continuous adaptation to its transmissible allograft niche, with overlapping mutations at every step of immunosurveillance, particularly self-antigen presentation and apoptosis. We also identified chronologically early somatic mutations in oncogenesis- and immune-related genes that may represent key initiators of clonal transmissibility. Thus, we provide the first insights into the specific genomic aberrations that underlie CTVT's dogged perseverance in canids around the world.
Resumo:
Klebsiella pneumoniaesequence type (ST) 307, carryingblaKPC-3,blaCTX-M-15,blaOXA-1,aac(6')-Ib-cr, andqnrB1 genes, is replacing the predominant hyperepidemic ST258 clone in Italy. Whole-genome and complete plasmid sequencing of one ST307 strain was performed and new features were identified.
Resumo:
A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs), equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74) and BRO (Baculovirus Repeated Open Reading Frame). The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family.
Resumo:
The genetic etiology of stroke likely reflects the influence of multiple loci with small effects, each modulating different pathophysiological processes. This research project utilized three analytical strategies to address the paucity of information related to the identification and characterization of genetic variation associated with stroke in the general population. ^ First, the general contribution of familial factors to stroke susceptibility was evaluated in a population-based sample of unrelated individuals. Increased risk of subclinical cerebral infarction was observed among individuals with a positive parental history of stroke. This association did not appear to be mediated by established stroke risk factors, specifically blood pressure levels or hypertension status. ^ The need to identify specific gene variation associated with stroke in the general population was addressed by evaluating seven candidate gene polymorphisms in a population-based sample of unrelated individuals. Three polymorphisms were significantly associated with increased subclinical cerebral infarction or incident clinical ischemic stroke risk. These relationships include the G-protein β3 subunit 825C/T polymorphism and clinical stroke in Whites, the lipoprotein lipase S/X447 polymorphism and subclinical and clinical stroke in men, and the angiotensin I-converting enzyme Ins/Del polymorphism and subclinical stroke in White men. These associations did not appear to be obfuscated by the stroke risk factors adjusted for in the analysis models specifically blood pressure levels or anti-hypertensive medication use. ^ The final research strategy considered, on a genome-wide scale, the idea that genetic variation may contribute to the occurrence of hypertension or stroke through a common etiologic pathway. Genomic regions were identified for which significant evidence of heterogeneity was observed among hypertensive sibpairs stratified by family history of stroke information. Regions identified on chromosome 15 in African Americans, and chromosome 13 in Whites and African Americans, suggest the presence of genes influencing hypertension and stroke susceptibility. ^ Insight into the role of genetics in stroke is useful for the potential early identification of individuals at increased risk for stroke and improved understanding of the etiology of the disease. The ultimate goal of these endeavors is to guide the development of therapeutic intervention and informed prevention to provide a lasting and positive impact on public health. ^
Resumo:
Retinitis pigmentosa (RP) is a name given to a group of inherited retinal dystrophies that lead to progressive photoreceptor degeneration, and thus, visual impairment. It is evident at both the clinical and the molecular level that these are heterogeneous disorders, with wide variation in severity, mode of inheritance, and phenotype. The genetics of RP are not simple; the disease can be inherited in dominant, recessive, X-linked, and digenic modes. Autosomal dominant RP (adRP) results from mutations in at least ten mapped loci, but there may be dozens of genetic loci where mutations can cause RP. To date, there are over a hundred genes known to cause retinal degenerative diseases, and less than half of these have been cloned (RetNet). Among the dozens of retinitis pigmentosa loci known to exist, only a few have been identified and the remainders are inferred from linkage studies. Today, the genes for seven of the twelve-adRP loci have been identified, and these are rhodopsin, peripherin/RDS, NRL, ROM1, CRX, RP13 and RP1. My research projects involved a combination of the continued search for genes involved in retinal dystrophies, as well the investigation into the role of peripherin/RDS and RP1 in the disease etiology of autosomal dominant RP. ^ Most of the mutations leading to inherited retinal disorders have been identified in predominately retina expressed genes like rhodopsin, peripherin/RDS, and RP1. Expressed sequence tags (ESTs) that were retina-specific were culled from sequence databases and, together with laboratory analysis, were analyzed as potential candidate genes for retinal dystrophies. Thirteen of the fifty-five identified retina-specific ESTs mapped to within candidate regions for inherited retinopathies. One of these is RP1L1, a homologue of RP1 and a potential cause of adRP. ^ Once a disease-associated gene has been identified, elucidating the role of that gene in the visual process is essential for understanding what happens when the process is defective as it is in adRP. My next projects involved investigating the role of a novel 5′ donor +3 splice site mutation on the mRNA of peripherin/RDS in adRP affected individuals, and comparative sequencing in RP1 to define conserved regions of the protein. Comparative sequencing is a powerful way to delineate critical regions of a sequence because different regions of a gene have different functions, and each region is subject to different levels of functional or structural constraints. Establishing a framework of conserved domains is beneficial not only for structural or functional studies, but can also aid in determining the potential effects of mutations. With the completion of sequencing of human genome, and other organisms such as Saccharomyces cerevisiae, Caenorhabditis elegans , and Drosophila, the facility of comparative sequencing will only increase in the future. Comparative sequencing has already become an established procedure for pinpointing conserved regions of a protein, and is an efficient way to target regions of a protein for experimental and/or evolutionary analysis. ^
Resumo:
Next-generation DNA sequencing platforms can effectively detect the entire spectrum of genomic variation and is emerging to be a major tool for systematic exploration of the universe of variants and interactions in the entire genome. However, the data produced by next-generation sequencing technologies will suffer from three basic problems: sequence errors, assembly errors, and missing data. Current statistical methods for genetic analysis are well suited for detecting the association of common variants, but are less suitable to rare variants. This raises great challenge for sequence-based genetic studies of complex diseases.^ This research dissertation utilized genome continuum model as a general principle, and stochastic calculus and functional data analysis as tools for developing novel and powerful statistical methods for next generation of association studies of both qualitative and quantitative traits in the context of sequencing data, which finally lead to shifting the paradigm of association analysis from the current locus-by-locus analysis to collectively analyzing genome regions.^ In this project, the functional principal component (FPC) methods coupled with high-dimensional data reduction techniques will be used to develop novel and powerful methods for testing the associations of the entire spectrum of genetic variation within a segment of genome or a gene regardless of whether the variants are common or rare.^ The classical quantitative genetics suffer from high type I error rates and low power for rare variants. To overcome these limitations for resequencing data, this project used functional linear models with scalar response to develop statistics for identifying quantitative trait loci (QTLs) for both common and rare variants. To illustrate their applications, the functional linear models were applied to five quantitative traits in Framingham heart studies. ^ This project proposed a novel concept of gene-gene co-association in which a gene or a genomic region is taken as a unit of association analysis and used stochastic calculus to develop a unified framework for testing the association of multiple genes or genomic regions for both common and rare alleles. The proposed methods were applied to gene-gene co-association analysis of psoriasis in two independent GWAS datasets which led to discovery of networks significantly associated with psoriasis.^
Resumo:
Nonsyndromic cleft lip with or without cleft palate (NSCLP) is a common birth defect with a multifactorial etiology. Despite decades of research, the genetic underpinnings of NSCLP still remain largely unexplained. A genome wide association study (GWAS) of a large NSCLP African American family with seven affected individuals across three generations found evidence for linkage at 8q21.3-24.12 (LOD = 2.98). This region contained three biologically relevant candidate genes: Frizzled-6 (FZD6) (LOD = 2.8), Matrilin-2 (MATN2) (LOD = 2.3), and Solute Carrier Family 25, Member 32 (SLC26A32) (LOD = 1.6). Sequencing of the coding regions and the 5’ and 3’ UTRs of these genes in two affected family members identified a rare intronic variant, rs138557689 (c.-153+432A>C), in FZD6. The rs138557689/C allele segregated with the NSCLP phenotype; in silico analysis predicted and EMSA analysis showed that the 138557689/C allele creates new DNA binding sites. FZD6 is part of the WNT pathway, which is involved in craniofacial development, including midface development and upper lip fusion. Our novel findings suggest that an alteration in FZD6 gene regulation may perturb this tightly controlled biological pathway and in turn contribute to the development of NSCLP in this family. Studies are underway to further define how the rs138557689/C variant affects expression of FZD6.
Resumo:
Clubfoot is a common, complex birth defect affecting 4,000 newborns in the United States and 135,000 world-wide each year. The clubfoot deformity is characterized by inward and rigid downward displacement of one or both feet, along with persistent calf muscle hypoplasia. Despite strong evidence for a genetic liability, there is a limited understanding of the genetic and environmental factors contributing to the etiology of clubfoot. The studies described in this dissertation were performed to identify variants and/or genes associated with clubfoot. Genome-wide linkage scan performed on ten multiplex clubfoot families identified seven new chromosomal regions that provide new areas to search for clubfoot genes. Troponin C (TNNC2) the strongest candidate gene, located in 20q12-q13.11, is involved in muscle contraction. Exon sequencing of TNNC2 did not identify any novel coding variants. Interrogation of fifteen muscle contraction genes found strong associations with SNPs located in potential regulatory regions of TPM1 (rs4075583 and rs3805965), TPM2 (rs2025126 and rs2145925) and TNNC2 (rs383112 and rs437122). In previous studies, a strong association was found with rs3801776 located in the basal promoter of HOXA9, a gene also involved in muscle development and patterning. Altogether, this data suggests that SNPs located in potential regulatory regions of genes involved in muscle development and function could alter transcription factor binding leading to changes in gene expression. Functional analysis of 3801776/HOXA9, rs2025126/TPM2 and rs2145925/TPM2 showed altered protein binding, which significantly influenced promoter activity. Although the ancestral allele (G) of rs4075583/TPM1 creates a DNA-protein complex, it did not affect TPM1 promoter activity. However and importantly, in the context of a haplotype, rs4075583/G significantly decreased TPM1 promoter activity. These results suggest dysregulation of multiple skeletal muscle genes, TPM1, TPM2, TNNC2 and HOXA9, working in concert may contribute to clubfoot. However, specific allelic combinations involving these four regulatory SNPs did not confer a significantly higher risk for clubfoot. Other combinations of these variants are being evaluated. Moreover, these variants may interact with yet to be discovered variants in other genes to confer a higher clubfoot risk. Collectively, we show novel evidence for the role of skeletal muscle genes in clubfoot indicating that there are multiple genetic factors contributing to this complex birth defect.