881 resultados para tracking
Resumo:
An algorithm for tracking multiple feature positions in a dynamic image sequence is presented. This is achieved using a combination of two trajectory-based methods, with the resulting hybrid algorithm exhibiting the advantages of both. An optimizing exchange algorithm is described which enables short feature paths to be tracked without prior knowledge of the motion being studied. The resulting partial trajectories are then used to initialize a fast predictor algorithm which is capable of rapidly tracking multiple feature paths. As this predictor algorithm becomes tuned to the feature positions being tracked, it is shown how the location of occluded or poorly detected features can be predicted. The results of applying this tracking algorithm to data obtained from real-world scenes are then presented.
Resumo:
A particle filter is a data assimilation scheme that employs a fully nonlinear, non-Gaussian analysis step. Unfortunately as the size of the state grows the number of ensemble members required for the particle filter to converge to the true solution increases exponentially. To overcome this Vaswani [Vaswani N. 2008. IEEE Trans Signal Process 56:4583–97] proposed a new method known as mode tracking to improve the efficiency of the particle filter. When mode tracking, the state is split into two subspaces. One subspace is forecast using the particle filter, the other is treated so that its values are set equal to the mode of the marginal pdf. There are many ways to split the state. One hypothesis is that the best results should be obtained from the particle filter with mode tracking when we mode track the maximum number of unimodal dimensions. The aim of this paper is to test this hypothesis using the three dimensional stochastic Lorenz equations with direct observations. It is found that mode tracking the maximum number of unimodal dimensions does not always provide the best result. The best choice of states to mode track depends on the number of particles used and the accuracy and frequency of the observations.
Resumo:
There is a rising demand for the quantitative performance evaluation of automated video surveillance. To advance research in this area, it is essential that comparisons in detection and tracking approaches may be drawn and improvements in existing methods can be measured. There are a number of challenges related to the proper evaluation of motion segmentation, tracking, event recognition, and other components of a video surveillance system that are unique to the video surveillance community. These include the volume of data that must be evaluated, the difficulty in obtaining ground truth data, the definition of appropriate metrics, and achieving meaningful comparison of diverse systems. This chapter provides descriptions of useful benchmark datasets and their availability to the computer vision community. It outlines some ground truth and evaluation techniques, and provides links to useful resources. It concludes by discussing the future direction for benchmark datasets and their associated processes.
Resumo:
Perceptual multimedia quality is of paramount importance to the continued take-up and proliferation of multimedia applications: users will not use and pay for applications if they are perceived to be of low quality. Whilst traditionally distributed multimedia quality has been characterised by Quality of Service (QoS) parameters, these neglect the user perspective of the issue of quality. In order to redress this shortcoming, we characterise the user multimedia perspective using the Quality of Perception (QoP) metric, which encompasses not only a user’s satisfaction with the quality of a multimedia presentation, but also his/her ability to analyse, synthesise and assimilate informational content of multimedia. In recognition of the fact that monitoring eye movements offers insights into visual perception, as well as the associated attention mechanisms and cognitive processes, this paper reports on the results of a study investigating the impact of differing multimedia presentation frame rates on user QoP and eye path data. Our results show that provision of higher frame rates, usually assumed to provide better multimedia presentation quality, do not significantly impact upon the median coordinate value of eye path data. Moreover, higher frame rates do not significantly increase level of participant information assimilation, although they do significantly improve overall user enjoyment and quality perception of the multimedia content being shown.
Resumo:
We present a novel way of interacting with an immersive virtual environment which involves inexpensive motion-capture using the Wii Remote®. A software framework is also presented to visualize and share this information across two remote CAVETM-like environments. The resulting application can be used to assist rehabilitation by sending motion information across remote sites. The application’s software and hardware components are scalable enough to be used on a desktop computer when home-based rehabilitation is preferred.
Resumo:
Visual telepresence seeks to extend existing teleoperative capability by supplying the operator with a 3D interactive view of the remote environment. This is achieved through the use of a stereo camera platform which, through appropriate 3D display devices, provides a distinct image to each eye of the operator, and which is slaved directly from the operator's head and eye movements. However, the resolution within current head mounted displays remains poor, thereby reducing the operator's visual acuity. This paper reports on the feasibility of incorporation of eye tracking to increase resolution and investigates the stability and control issues for such a system. Continuous domain and discrete simulations are presented which indicates that eye tracking provides a stable feedback loop for tracking applications, though some empirical testing (currently being initiated) of such a system will be required to overcome indicated stability problems associated with micro saccades of the human operator.
Resumo:
The Solar TErrestrial RElations Observatory (STEREO) provides high cadence and high resolution images of the structure and morphology of coronal mass ejections (CMEs) in the inner heliosphere. CME directions and propagation speeds have often been estimated through the use of time-elongation maps obtained from the STEREO Heliospheric Imager (HI) data. Many of these CMEs have been identified by citizen scientists working within the SolarStormWatch project ( www.solarstormwatch.com ) as they work towards providing robust real-time identification of Earth-directed CMEs. The wide field of view of HI allows scientists to directly observe the two-dimensional (2D) structures, while the relative simplicity of time-elongation analysis means that it can be easily applied to many such events, thereby enabling a much deeper understanding of how CMEs evolve between the Sun and the Earth. For events with certain orientations, both the rear and front edges of the CME can be monitored at varying heliocentric distances (R) between the Sun and 1 AU. Here we take four example events with measurable position angle widths and identified by the citizen scientists. These events were chosen for the clarity of their structure within the HI cameras and their long track lengths in the time-elongation maps. We show a linear dependency with R for the growth of the radial width (W) and the 2D aspect ratio (χ) of these CMEs, which are measured out to ≈ 0.7 AU. We estimated the radial width from a linear best fit for the average of the four CMEs. We obtained the relationships W=0.14R+0.04 for the width and χ=2.5R+0.86 for the aspect ratio (W and R in units of AU).
Resumo:
In this study, we compare two different cyclone-tracking algorithms to detect North Atlantic polar lows, which are very intense mesoscale cyclones. Both approaches include spatial filtering, detection, tracking and constraints specific to polar lows. The first method uses digital bandpass-filtered mean sea level pressure (MSLP) fieldsin the spatial range of 200�600 km and is especially designed for polar lows. The second method also uses a bandpass filter but is based on the discrete cosine transforms (DCT) and can be applied to MSLP and vorticity fields. The latter was originally designed for cyclones in general and has been adapted to polar lows for this study. Both algorithms are applied to the same regional climate model output fields from October 1993 to September 1995 produced from dynamical downscaling of the NCEP/NCAR reanalysis data. Comparisons between these two methods show that different filters lead to different numbers and locations of tracks. The DCT is more precise in scale separation than the digital filter and the results of this study suggest that it is more suited for the bandpass filtering of MSLP fields. The detection and tracking parts also influence the numbers of tracks although less critically. After a selection process that applies criteria to identify tracks of potential polar lows, differences between both methods are still visible though the major systems are identified in both.
Resumo:
When performing data fusion, one often measures where targets were and then wishes to deduce where targets currently are. There has been recent research on the processing of such out-of-sequence data. This research has culminated in the development of a number of algorithms for solving the associated tracking problem. This paper reviews these different approaches in a common Bayesian framework and proposes an architecture that orthogonalises the data association and out-of-sequence problems such that any combination of solutions to these two problems can be used together. The emphasis is not on advocating one approach over another on the basis of computational expense, but rather on understanding the relationships among the algorithms so that any approximations made are explicit. Results for a multi-sensor scenario involving out-of-sequence data association are used to illustrate the utility of this approach in a specific context.
Resumo:
Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.
Resumo:
Proactive motion in hand tracking and in finger bending, in which the body motion occurs prior to the reference signal, was reported by the preceding researchers when the target signals were shown to the subjects at relatively high speed or high frequencies. These phenomena indicate that the human sensory-motor system tends to choose an anticipatory mode rather than a reactive mode, when the target motion is relatively fast. The present research was undertaken to study what kind of mode appears in the sensory-motor system when two persons were asked to track the hand position of the partner with each other at various mean tracking frequency. The experimental results showed a transition from a mutual error-correction mode to a synchronization mode occurred in the same region of the tracking frequency with that of the transition from a reactive error-correction mode to a proactive anticipatory mode in the mechanical target tracking experiments. Present research indicated that synchronization of body motion occurred only when both of the pair subjects operated in a proactive anticipatory mode. We also presented mathematical models to explain the behavior of the error-correction mode and the synchronization mode.