881 resultados para therapeutic target


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To evaluate the potential therapeutic utility of histone deacetylase inhibitors (HDACi) in targeting VEGF receptors in non-small-cell lung cancer. Materials & methods: Non-small-cell lung cancer cells were screened for the VEGF receptors at the mRNA and protein levels, while cellular responses to various HDACi were examined. Results: Significant effects on the regulation of the VEGF receptors were observed in response to HDACi. These were associated with decreased secretion of VEGF, decreased cellular proliferation and increased apoptosis which could not be rescued by addition of exogenous recombinant VEGF. Direct remodeling of the VEGFR1 and VEGFR2 promoters was observed. In contrast, HDACi treatments resulted in significant downregulation of the Neuropilin receptors. Conclusion: Epigenetic targeting of the Neuropilin receptors may offer an effective treatment for lung cancer patients in the clinical setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents and evaluates Quantum Inspired models of Target Activation using Cued-Target Recall Memory Modelling over multiple sources of Free Association data. Two components were evaluated: Whether Quantum Inspired models of Target Activation would provide a better framework than their classical psychological counterparts and how robust these models are across the different sources of Free Association data. In previous work, a formal model of cued-target recall did not exist and as such Target Activation was unable to be assessed directly. Further to that, the data source used was suspected of suffering from temporal and geographical bias. As a consequence, Target Activation was measured against cued-target recall data as an approximation of performance. Since then, a formal model of cued-target recall (PIER3) has been developed [10] with alternative sources of data also becoming available. This allowed us to directly model target activation in cued-target recall with human cued-target recall pairs and use multiply sources of Free Association Data. Featural Characteristics known to be important to Target Activation were measured for each of the data sources to identify any major differences that may explain variations in performance for each of the models. Each of the activation models were used in the PIER3 memory model for each of the data sources and was benchmarked against cued-target recall pairs provided by the University of South Florida (USF). Two methods where used to evaluate performance. The first involved measuring the divergence between the sets of results using the Kullback Leibler (KL) divergence with the second utilizing a previous statistical analysis of the errors [9]. Of the three sources of data, two were sourced from human subjects being the USF Free Association Norms and the University of Leuven (UL) Free Association Networks. The third was sourced from a new method put forward by Galea and Bruza, 2015 in which pseudo Free Association Networks (Corpus Based Association Networks - CANs) are built using co-occurrence statistics on large text corpus. It was found that the Quantum Inspired Models of Target Activation not only outperformed the classical psychological model but was more robust across a variety of data sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Australian government has recently pledged a reduction in GHGs emissions of 26–28% below the 2005 level by 2030. How big is the challenge for the country to achieve this target in terms of its present emissions profile, recent historical trends, and the contributions to those trends from key proximate factors contributing to emissions? In this paper, we attempt a quantitative judgement of the challenge by using decomposition analysis. Based on the analysis it appears the announced target will be quite challenging to achieve if the average annual mitigating effects from economic restructuring, energy efficiency improvements and movement towards less emissions-intensive energy sources in evidence over 2002–2013 continued through to 2030; however, if the contribution from these mitigating sources in evidence over 2006–2013 can be sustained, achievement of the target will be much less challenging. The challenge for government then will be to provide a policy framework to ensure the more pronounced beneficial impacts of the mitigating factors evidenced during 2006–2013 can be maintained over the years to 2030.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression of the F-Box protein Leaf Curling Responsiveness (LCR) is regulated by microRNA, miR394, and alterations to this interplay in Arabidopsis thaliana produce defects in leaf polarity and shoot apical meristem (SAM) organisation. Although the miR394-LCR node has been documented in Arabidopsis, the identification of proteins targeted by LCR F-box itself has proven problematic. Here, a proteomic analysis of shoot apices from plants with altered LCR levels identified a member of the Major Latex Protein (MLP) family gene as a potential LCR F-box target. Bioinformatic and molecular analyses also suggested that other MLP family members are likely to be targets for this post-translational regulation. Direct interaction between LCR F-Box and MLP423 was validated. Additional MLP members had reduction in protein accumulation, in varying degrees, mediated by LCR F-Box. Transgenic Arabidopsis lines, in which MLP28 expression was reduced through an artificial miRNA technology, displayed severe developmental defects, including changes in leaf patterning and morphology, shoot apex defects, and eventual premature death. These phenotypic characteristics resemble those of Arabidopsis plants modified to over-express LCR. Taken together, the results demonstrate that MLPs are driven to degradation by LCR, and indicate that MLP gene family is target of miR394-LCR regulatory node, representing potential targets for directly post-translational regulation mediated by LCR F-Box. In addition, MLP28 family member is associated with the LCR regulation that is critical for normal Arabidopsis development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suurin ongelma syöpätautien lääkehoidossa on sen aiheuttamat toksiset sivuvaikutukset. Tyypillisesti vain noin 1 % elimistöön annostellusta lääkeaineesta saavuttaa hoitoa tarvitsevat syöpäsolut, loppuosa lääkeaineesta jää vahingoittamaan elimistön terveitä soluja. Toksiset sivuvaikutukset rajoittavat lääkehoidon annoksen nostamista elimistössä riittävälle pitoisuudelle, mikä johtaa usein sairauden ennenaikaiseen pahenemiseen ja mahdollisen lääkeaineresistenssin kehittymiseen. Liposomien välittämä lääkeaineen kohdentaminen voidaan jakaa kahteen eri menetelmään: passiiviseen ja aktiiviseen kohdentamiseen. Liposomien passiivisen kohdentamisen tarkoituksena on lisätä sytotoksisen lääkeaineen paikallistumista pelkästään kasvainkudokseen. Passiivinen kohdentaminen perustuu liposomien kulkeutumiseen verenkierron mukana, jolloin liposomit kerääntyvät epänormaalisti muodostuneeseen kasvainkudokseen. Liposomien aktiivisella kohdentamisella pyritään parantamaan passiivisesti kohdentuvien liposomien terapeuttista tehokkuutta kohdentamalla lääkeaineen vaikutus pelkästään syöpäsoluihin. Aktiivisessa kohdennuksessa liposomin pintaan kiinnitetään ligandi, joka spesifisesti tunnistaa kohdesolun. Tämän pro gradu -tutkielman kirjallisen osion tarkoituksena oli tutustua syöpäkudokseen kohdennettujen liposomien ominaisuuksiin tehokkaan soluunoton ja sytotoksisuuden saavuttamiseksi. Kokeellisessa osiossa tutkittiin kohdennettujen liposomien soluunottoa ja sytotoksista vaikutusta ihmisen munasarjasta eristetyillä adenokarsinoomasoluilla (SKOV-3). Liposomit kohdennettiin setuksimabi (C225, Erbitux®) vasta-aineella, jonka on todettu olevan tietyissä syöpätyypeissä (mm. keuhko- ja kolorektaalisyövissä, pään ja kaulan syövissä sekä rinta-, munuais-, eturauhas-, haima- ja munasarjasyövissä) yli-ilmentyneen epidermaalisen kasvutekijäreseptoriperheen HER1-proteiinin (ErbB-1, EGFR, epidermal growth factor receptor) spesifinen ja selektiivinen inhibiittori. Afrikan viherapinan munuaisista lähtöisin olevaa CV-1 solulinjaa käytettiin kontrollina kuvaamaan elimistön normaaleja soluja. Kohdennettujen liposomien soluunottoa tutkittiin soluunottokokeilla, joissa käytettiin kontrollina kohdentamattomia pegyloituja liposomeja. Setuksimabi-vasta-aineen spesifinen sitoutuminen EGF-reseptoriin todettiin kilpailutuskokeilla. Doksorubisiinia sisältävien immunoliposomien sytotoksisuutta selvitettiin Alamar Blue™ -elävyystestillä. Lisäksi immunoliposomien säilyvyyttä seurattiin mittaamalla liposomien keskimääräinen halkaisija noin kahden viikon välein. Setuksimabi-vasta-aineella kohdennettujen liposomien soluunotto oli huomattavasti suurentunut SKOV-3 syöpäsoluissa ja doksorubisiinia sisältävät kohdennetut liposomit aiheuttivat voimakkaamman sytotoksisen vaikutuksen kuin kohdentamattomat liposomit. Kohdennettujen doksorubisiiniliposomien sytotoksisuus tuli kuitenkin esille viiveellä, mikä viittaa lääkeaineen hitaaseen vapautumiseen liposomista. Suurentunutta soluunottoa ja sytotoksista vaikutusta ei havaittu CV-1 solulinjassa. Kohdennettujen liposomien sovellusmahdollisuudet lääketieteessä ja syövän hoidossa ovat merkittävät. Tällä hetkellä liposomien kliininen käyttö rajoittuu passiivisesti kohdennettuihin liposomeihin (Doxil® (Am.),Caelyx® (Eur.)). Lupaavista solukokeista huolimatta kohdennettujen liposomien terapeuttinen käyttö tulevaisuudessa näyttää haasteelliselta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA methyltransferases (MTases) are a group of enzymes that catalyze the methyl group transfer from S-adenosyl-L-methionine in a sequence-specific manner. Orthodox Type II DNA MTases usually recognize palindromic DNA sequences and add a methyl group to the target base (either adenine or cytosine) on both strands. However, there are a number of MTases that recognize asymmetric target sequences and differ in their subunit organization. In a bacterial cell, after each round of replication, the substrate for any MTase is hemimethylated DNA, and it therefore needs only a single methylation event to restore the fully methylated state. This is in consistent with the fact that most of the DNA MTases studied exist as monomers in solution. Multiple lines of evidence suggest that some DNA MTases function as dimers. Further, functional analysis of many restriction-modification systems showed the presence of more than one or fused MTase genes. It was proposed that presence of two MTases responsible for the recognition and methylation of asymmetric sequences would protect the nascent strands generated during DNA replication from cognate restriction endonuclease. In this review, MTases recognizing asymmetric sequences have been grouped into different subgroups based on their unique properties. Detailed characterization of these unusual MTases would help in better understanding of their specific biological roles and mechanisms of action. The rapid progress made by the genome sequencing of bacteria and archaea may accelerate the identification and study of species- and strain-specific MTases of host-adapted bacteria and their roles in pathogenic mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA methyltransferases (MTases) are a group of enzymes that catalyze the methyl group transfer from S-adenosyl-L-methionine in a sequence-specific manner. Orthodox Type II DNA MTases usually recognize palindromic DNA sequences and add a methyl group to the target base (either adenine or cytosine) on both strands. However, there are a number of MTases that recognize asymmetric target sequences and differ in their subunit organization. In a bacterial cell, after each round of replication, the substrate for any MTase is hemimethylated DNA, and it therefore needs only a single methylation event to restore the fully methylated state. This is in consistent with the fact that most of the DNA MTases studied exist as monomers in solution. Multiple lines of evidence suggest that some DNA MTases function as dimers. Further, functional analysis of many restriction-modification systems showed the presence of more than one or fused MTase genes. It was proposed that presence of two MTases responsible for the recognition and methylation of asymmetric sequences would protect the nascent strands generated during DNA replication from cognate restriction endonuclease. In this review, MTases recognizing asymmetric sequences have been grouped into different subgroups based on their unique properties. Detailed characterization of these unusual MTases would help in better understanding of their specific biological roles and mechanisms of action. The rapid progress made by the genome sequencing of bacteria and archaea may accelerate the identification and study of species- and strain-specific MTases of host-adapted bacteria and their roles in pathogenic mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of gestational diabetes (GDM) during pregnancy is a powerful sign of a risk of later type 2 diabetes (T2D) and cardiovascular diseases (CVDs). The physiological basis for this disease progression is not yet fully understood, but increasing evidence exists on interplay of insulin resistance, subclinical inflammation, and more recently, on unbalance of the autonomic nervous system. Since the delay in development of T2D and CVD after GDM ranges from years to decades, better understanding of the pathophysiology of GDM could give us new tools for primary prevention. The present study was aimed at investigating the role of the sympathetic nervous system (SNS) in GDM and its associations with insulin and a variety of inflammatory cytokines and coagulation and fibrinolysis markers. This thesis covers two separate study lines. Firstly, we investigated 41 women with GDM and 22 healthy pregnant and 14 non-pregnant controls during the night in hospital. Blood samples were drawn at 24:00, 4:00 and 7:00 h to determine the concentrations of plasma glucose, insulin, noradrenaline (NA) and adrenomedullin, markers of subclinical inflammation, coagulation and fibrinolysis variables and platelet function. Overnight holter ECG recording was performed for analysis of heart rate variability (HRV). Secondly, we studied 87 overweight hypertensive women with natural menopause. They were randomised to use a central sympatholytic agent, moxonidine (0.3mg twice daily), the β-blocking agent atenolol (50 mg once daily+blacebo once daily) for 8 weeks. Inflammatory markers and adiponectin were analysed at the beginning and after 8 weeks. Activation of the SNS (increase in NA, decreased HRV) was seen in pregnant vs. non-pregnant women, but no difference existed between GDM and normal pregnancy. However, modulation (internal rhythm) of HRV was attenuated in GDM. Insulin and inflammatory cytokine levels were comparable in all pregnant women but nocturnal variation of concentrations of C-reactive protein, serum amyloid A and insulin were reduced in GDM. Levels of coagulation factor VIII were lower in GDM compared with normal pregnancy, whereas no other differences were seen in coagulation and fibrinolysis markers. No significant associations were seen between NA and the studied parameters. In the study of postmenopausal women, moxonidine treatment was associated with favourable changes in the inflammatory profile, seen as a decrease in TNFα concentrations (increase in atenolol group) and preservation of adiponectin levels (decrease in atenolol group). In conclusion, our results did not support our hypotheses of increased SNS activity in GDM or a marked association between NA and inflammatory and coagulation markers. Reduced biological variation of HRV, insulin and inflammatory cytokines suggests disturbance of autonomic and hormonal regulatory mechanisms in GDM. This is a novel finding. Further understanding of the regulatory mechanisms could allow earlier detection of risk women and the possibility of prevention. In addition, our results support consideration of the SNS as one of the therapeutic targets in the battle against metabolic diseases, including T2D and CVD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both inherited genetic variations and somatically acquired mutations drive cancer development. The aim of this thesis was to gain insight into the molecular mechanisms underlying colorectal cancer (CRC) predisposition and tumor progression. Whereas one-third of CRC may develop in the context of hereditary predisposition, the known highly penetrant syndromes only explain a small fraction of all cases. Genome-wide association studies have shown that ten common single nucleotide polymorphisms (SNPs) modestly predispose to CRC. Our population-based sample series of around thousand CRC cases and healthy controls was genotyped for these SNPs. Tumors of heterozygous patients were analyzed for allelic imbalance, in an attempt to reveal the role of these SNPs in somatic tumor progression. The risk allele of rs6983267 at 8q24 was favored in the tumors significantly more often than the neutral allele, indicating that this germline variant is somatically selected for. No imbalance targeting the risk allele was observed in the remaining loci, suggesting that most of the low-penetrance CRC SNPs mainly play a role in the early stages of the neoplastic process. The ten SNPs were further analyzed in 788 CRC cases, 97 of which had a family history of CRC, to evaluate their combined contribution. A significant association appeared between the overall number of risk alleles and familial CRC and these ten SNPs seem to explain around 9% of the familial clustering of CRC. Finding more CRC susceptibility alleles may facilitate individualized risk prediction and cancer prevention in the future. Microsatellite instability (MSI), resulting from defective mismatch repair function, is a hallmark of Lynch syndrome and observed in a subset of all CRCs. Our aim was to identify microsatellite frameshift mutations that inactivate tumor suppressor genes in MSI CRCs. By sequencing microsatellite repeats of underexpressed genes we found six novel MSI target genes that were frequently mutated in 100 MSI CRCs: 51% in GLYR1, 47% in ABCC5, 43% in WDTC1, 33% in ROCK1, 30% in OR51E2, and 28% in TCEB3. Immunohistochemical staining of GLYR1 revealed defective protein expression in homozygously mutated tumors, providing further support for the loss of function hypothesis. Another mutation screening effort sought to identify MSI target genes with putative oncogenic functions. Microsatellites were similarly sequenced in genes that were overexpressed and, upon mutation, predicted to avoid nonsense-mediated mRNA decay. The mitotic checkpoint kinase TTK harbored protein-elongating mutations in 59% of MSI CRCs and the mutant protein was detected in heterozygous MSI CRC cells. No checkpoint dysregulation or defective protein localization was observable however, and the biological relevance of this mutation may hence be related to other mechanisms. In conclusion, these two large-scale and unbiased efforts identified frequently mutated genes that are likely to contribute to the development of this cancer type and may be utilized in developing diagnostic and therapeutic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Therapeutic work with the client’s present moment experience in existential therapy was studied by means of conversation analysis. Using publicly available video recordings of therapy sessions as data, an existential therapist’s practice of guiding a client into immediacy, or refocusing the talk on a client’s immediate experience, was described and compared with a therapist’s corresponding action in cognitive therapy. The study contributes to the description of interactional practice of existential therapy, and involves the first application of conversation analysis to a comparative study of psychotherapy process. The potential utility of this approach and the clinical and empirical implications of the present findings are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A process of change within a single case of cognitive-constructivist therapy is analyzed by means of conversation analysis (CA). The focus is on a process of change in the sequences of interaction, which consist of the therapist’s conclusion and the patient’s response to it. In the conclusions, the therapist investigates and challenges the patient’s tendency to transform her feelings of disappointment and anger into self-blame. Over the course of the therapy, the patient’s responses to these conclusions are recast: from the patient first rejecting the conclusion, to then being ambivalent, and finally to agreeing with the therapist. On the basis of this case study, we suggest that an analysis that focuses on sequences of talk that are interactionally similar offers a sensitive method to investigate the manifestation of therapeutic change. It is suggested that this line of research can complement assimilation analysis and other methods of analyzing changes in a client’s talk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All protein-encoding genes in eukaryotes are transcribed into messenger RNA (mRNA) by RNA Polymerase II (RNAP II), whose activity therefore needs to be tightly controlled. An important and only partially understood level of regulation is the multiple phosphorylations of RNAP II large subunit C-terminal domain (CTD). Sequential phosphorylations regulate transcription initiation and elongation, and recruit factors involved in co-transcriptional processing of mRNA. Based largely on studies in yeast models and in vitro, the kinase activity responsible for the phosphorylation of the serine-5 (Ser5) residues of RNAP II CTD has been attributed to the Mat1/Cdk7/CycH trimer as part of Transcription Factor IIH. However, due to the lack of good mammalian genetic models, the roles of both RNAP II Ser5 phosphorylation as well as TFIIH kinase in transcription have provided ambiguous results and the in vivo kinase of Ser5 has remained elusive. The primary objective of this study was to elucidate the role of mammalian TFIIH, and specifically the Mat1 subunit in CTD phosphorylation and general RNAP II-mediated transcription. The approach utilized the Cre-LoxP system to conditionally delete murine Mat1 in cardiomyocytes and hepatocytes in vivo and and in cell culture models. The results identify the TFIIH kinase as the major mammalian Ser5 kinase and demonstrate its requirement for general transcription, noted by the use of nascent mRNA labeling. Also a role for Mat1 in regulating general mRNA turnover was identified, providing a possible rationale for earlier negative findings. A secondary objective was to identify potential gene- and tissue-specific roles of Mat1 and the TFIIH kinase through the use of tissue-specific Mat1 deletion. Mat1 was found to be required for the transcriptional function of PGC-1 in cardiomyocytes. Transriptional activation of lipogenic SREBP1 target genes following Mat1 deletion in hepatocytes revealed a repressive role for Mat1apparently mediated via co-repressor DMAP1 and the DNA methyltransferase Dnmt1. Finally, Mat1 and Cdk7 were also identified as a negative regulators of adipocyte differentiation through the inhibitory phosphorylation of Peroxisome proliferator-activated receptor (PPAR) γ. Together, these results demonstrate gene- and tissue-specific roles for the Mat1 subunit of TFIIH and open up new therapeutic possibilities in the treatment of diseases such as type II diabetes, hepatosteatosis and obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amino acid sequences of proteinaceous proteinase inhibitors have been extensively analysed for deriving information regarding the molecular evolution and functional relationship of these proteins. These sequences have been grouped into several well defined families. It was found that the phylogeny constructed with the sequences corresponding to the exposed loop responsible for inhibition has several branches that resemble those obtained from comparisons using the entire sequence. The major branches of the unrooted tree corresponded to the families to which the inhibitors belonged. Further branching is related to the enzyme specificity of the inhibitor. Examination of the active site loop sequences of trypsin inhibitors revealed that there are strong preferences for specific amino acids at different positions of the loop. These preferences are inhibitor class specific. Inhibitors active against more than one enzyme occur within a class and confirm to class specific sequence in their loops. Hence, only a few positions in the loop seem to determine the specificity. The ability to inhibit the same enzyme by inhibitors that belong to different classes appears to be a result of convergent evolution

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The p53-family consists of three transcription factors, p53, p73 and p63. The family members have similar but also individual functions connected to cell cycle regulation, development and tumorigenesis. p53 and p73 act mainly as tumor suppressors. During DNA damage caused by anticancer drugs or irradiation, p53 and p73 levels are upregulated in cancer cells leading to apoptosis and cell cycle arrest. p53 is mutated in almost 50 per cent of the cancers, causing the cancer cells unable to undergo cell death. Instead, p73 is rarely mutated in cancer cells and because of that could be more viable target for anticancer therapy. The network surrounding the regulation of p73 is extensive and has several potential targets for cancer therapy. One of the most studied is Itch ligase, the negative regulator of p73 levels. Gene therapy directed towards knockdown of Itch ligase is a potential approach but in need for more in vivo proof. p73 has two isoforms, transactivating TA-forms and dominant-negative ΔN-forms. The specific regulation of these isoforms could also offer a possible way for more effective cancer treatment. The literature work includes information of structures, isoforms, functions and possible therapeutic targets of p73. Also the main therapeutic approaches to date are introduced. The experimental part is based on transfection and cytotoxicity studies done e.g. in pancreatic cancer cells (Mia PaCa-2, PANC1, BxPc-3 and HPAC). The aim of the experimental work was to optimize the conditions for effective transfection with DAB16 dendrimer nanoparticles and to measure the cytotoxicity of plain dendrimers and DAB16-pDNA complexes. Also the protein levels of p73 and Itch ligase were measured by Western blotting. The work was done as a part of a bigger project, which was aiming to down regulate Itch ligase (negative regulator of p73) by siRNA/shRNA. Tranfection results were promising, showing good transfection efficacy with DAB16 N/P30 in pancreatic cancer cells (except in BxPc-3). Pancreatic cancer cells showed recovery in 3 days after they were exposed to plain dendrimer solution or to DAB16-pDNA. Measurement of protein levels by Western blotting was not optimal and the proposals for the improvement regarding e.g. the gels and the extracted protein amounts have been done.