960 resultados para substrate
Resumo:
A sensor was fashioned to monitor the volume of nutrient in a solid substrate-based growth media by using electrochemical admittance spectroscopy. Several experimental parameters were investigated (i.e. The use of two- or three-electrode cells, the superficial area of the electrode, the amount of nutrient solution added to the growth media, and the influence of varying the dc and ac potential) to assess how these variables affect the admittance of the system. A linear correlation was observed between the maximum of the imaginary admittance and the volume of nutrient present. The response factor was 2.8 x 10(-5) S cm(-2) ml(-1) and the limit of detection (LOD) was 0.54 ml. The humidity of the growth media does not change the response of the nutrient toward the monitoring measurements. These results demonstrate that the volume of nutrient in this solid substrate-based growth media can be assessed using a ceramic sensor to measure the imaginary admittance. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Cephalosporin C production process optimization was studied based on four experiments carried out in an agitated and aerated tank fermenter operated as a fed-batch reactor. The microorganism Cephalosporium acremonium ATCC 48272 (C-10) was cultivated in a synthetic medium containing glucose as major carbon and energy source. The additional medium contained a hydrolyzed sucrose solution as the main carbon and energy source and it was added after the glucose depletion. By manipulating the supplementary feed rate, it was possible to increase antibiotic production. A mathematical model to represent the fed-batch production process was developed. It was observed that the model was applicable under different operation conditions, showing that optimization studies can be made based on this model. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The cassava processing industry generates wastewater named manipueira with a high organic content. Although considered a pollutant, manipueira can be used as substrate for fermentative processes including the cultivation of Geotrichum fragrans. This aerobic microorganism isolated from cassava wastewater has cyanide resistant respiration. Under cassava wastewater cultivation, G. fragrans produced fruit aroma volatile compounds. This study evaluated volatile compounds produced by G. fragrans in cassava liquid waste. The waste had a sugar composition composed of dextrin (2.6%), maltose (1.4%), sucrose (32.1%), glucose (38.3%), and fructose (25.6%). The average value of total sugars was 58.2 g l(-1), composed of 38.0 g l(-1) reducing and 20.2 g l(-1) non-reducing sugars. The chemical oxygen demand (COD) average value was 60 000 mg l(-1). G. fragrans used sugars (fructose and glucose) for energy generation reducing the COD value of the cassava wastewater by 40%. Biomass production of G. fragrans cultivated for 12 h in natural cassava liquid waste was 12.8 g l(-)1. The volatile compounds identified in the cassava liquid waste after 72 h cultivation were: 1-butanol, 3-methyl 1-butanol (isoamylic alcohol), 2-methyl 1-butanol, 1-3 butanodiol and phenylethanol; ethyl acetate, ethyl propionate, 2-methyl ethyl propionate and 2-methyl propanoic. The effect of substrate supplementation with glucose (50 g l(-1)), fructose (50 g l(-1)) and aqueous yeast extract (200 ml l(-1)) did not affect the qualitative and quantitative profiles of volatile compounds. These results indicate that the carbon (C) source utilized by microorganism was glucose or fructose, while nitrogen (N) supplementation was not necessary because the agent did not exhaust all the nitrogen of the wastewater. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Cubic GaN layers are grown by molecular beam epitaxy on (001) GaAs substrates. Optical micrographs of the GaN epilayers intentionally grown at Ga excess reveal the existence of surface irregularities such as bright rectangular structures, dark dots surrounded by rectangles and dark dots without rectangles. Micro-Raman spectroscopy is used to study the structural properties of these inclusions and of the epilayers in greater detail. We conclude that the observed irregularities are the result of a melting process due to the existence of a liquid Ga phase on the growing surface.
Resumo:
Aware of the difficulties in applying sol-gel technology on the preparation of thin films suitable for optical devices, the present paper reports on the preparation of crack-free erbium- and ytterbium-doped silica: hafnia thick films onto silica on silicon. The film was obtained using a dispersion of silica-hafnia nanoparticles into a binder solution, spin-coating, regular thermal process and rapid thermal process. The used methodology has allowed a significant increase of the film thickness. Based on the presented results good optical-quality films with the required thickness for a fiber matching single mode waveguide were obtained using the erbium- and ytterbium-activated sol-gel silica:hafnia system. The prepared film supports two transversal electric modes at 1550 nm and the difference between the transversal electric mode and the transversal magnetic mode is very small, indicating low birefringence. Photoluminescence of the I-4(13/2) -> I-4(15/2) transition of erbium ions shows a broad band centered at 1.53 mu m with full width at a half maximum of 28 nm. Up-conversion emission was carried out under different pump laser powers, and just one transition at red region was observed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This work presents the study of substrate surface effects on rhodamine B-containing silica films obtained from TEOS (tetraethylorthosilicate) acid hydrolysis. Soda-lime glass substrates were treated with basic solution under different reaction times and temperatures. Rhodamine B-containing silica films were deposited on pre-treated substrates by the spin-coating method. The substrate surface directly affects film morphology and homogeneity. The films are formed by packed silica spheres which protect the dye against acid-base attack. Luminescence spectra present shifts on the dye emission maximum as expected for different pH values on the substrate surface depending on the alkaline treatment. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Lady palm, [Rhapis excelsa (Thunberg) Henry ex. Rehder] is one of the most cultivated ornamental palms in the world, for use as a vase plant or in shaded landscapes. Because limited information exists on lady palm response to fertilizers, the objective of this study was to evaluate the effect of different types of fertilization and substrates on lady palm seedling growth and development. Three year old lady palms were planted in 8-L pots, filled with a mix of soil, manure, and sand 1:1:1 (v:v:v), placed under a 50% shade, and irrigated with microspray. Treatments were substrate fertilization with 500 g P(2)O(5) and 100 g K(2)O per m(3); fertilization with 1.8 kg of P(2)O(5) (simple superphosphate) per m3; 50 g of nitrogen (N), P(2)O(5), and K(2)O of a granulated fertilizer (10:10:10) per m(3), control (without fertilization), and a foliar fertilization in addition to these treatments using the commercial product Biofert (8:9:9). Treatments were replicated four times in a randomized block design. Each treatment plot consisted of four plants. Data were collected at 140, 170, 200, 230, 260, and 290 days after transplanting (DAT) for plant heights, stem diameter at substrate level, number of leaves, shoots, and canopy, roots fresh and dry matter samples were harvest at 290 days. Foliar fertilization resulted in significantly greater plant height in a 140, 120, 200, and 230 DAT and plant diameter on the 140, 260, and 290 DAT. There was interaction among factors for number of leaves with fertilization based on P(2)O(5) and K(2)O when leaf fertilizer was added that resulted in a greater number of leaves.
MINERAL COMPOSITION of RAW MATERIAL, SUBSTRATE and FRUITING BODIES of Pleurotus ostreatus IN CULTURE
Resumo:
In a culture of a Pleurotus ostreatus (oyster mushroom) strain, macro and micronutrients of the raw material and the initial and spent substrates were evaluated. Substrates were formulated with sawdust from Simarouba amara Aubl. and Ochroma piramidale Cav. ex. Lam., crushed Bactris gasipaes Kunth and crushed Saccharum officinarum (sugar cane). Samples were solubilized by means of acid digestion (nitric-peridrol). Ca, Mg, Fe, Cu, Zn and Mn were determined by atomic absorption spectrophotometry, Na and K by atomic emission, and P by colorimetry. The mineral composition of the fruiting body varied with the substrates, which made possible the production of a fruiting body rich in K, P Mg and Fe. Potassium was the mineral with the highest content in the fruiting body in all substrates tested (36.83-42.18g.kg(-1)). There was an increase of protein and mineral content in the spent substrate in relation to the initial one.
Resumo:
The effect of magnetic field enhanced plasma immersion ion implantation (PIII) in silicon substrate has been investigated at low and high pulsed bias voltages. The magnetic field in magnetic bottle configuration was generated by two magnetic coils installed outside the vacuum chamber. The presence of both, electric and magnetic field in PIII creates a system of crossed E x B fields, promoting plasma rotation around the target. The magnetized electrons drifting in crossed E x B fields provide electron-neutral collision. Consequently, the efficient background gas ionization augments the plasma density around the target where a magnetic confinement is achieved. As a result, the ion current density increases, promoting changes in the samples surface properties, especially in the surface roughness and wettability and also an increase of implantation dose and depth. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bacterial cellulose (BC) membranes produced by gram-negative, acetic acid bacteria (Gluconacetobacter xylinus), were used as flexible substrates for the fabrication of Organic Light Emitting Diodes (OLED). In order to achieve the necessary conductive properties indium tin oxide (ITO) thin films were deposited onto the membrane at room temperature using radio frequency (r.f) magnetron sputtering with an r.f. power of 30 W, at pressure of 8 mPa in Ar atmosphere without any subsequent thermal treatment. Visible light transmittance of about 40% was observed. Resistivity, mobility and carrier concentration of deposited ITO films were 4.90 x 10(-4) Ohm cm, 8.08 cm(2)/V-s and -1.5 x 10(21) cm(-3), respectively, comparable with commercial ITO substrates. In order to demonstrate the feasibility of devices based on BC membranes three OLEDs with different substrates were produced: a reference one with commercial ITO on glass, a second one with a SiO(2) thin film interlayer between the BC membrane and the ITO layer and a third one just with ITO deposited directly on the BC membrane. The observed OLED luminance ratio was: 1; 0.5; 0.25 respectively, with 2400 cd/m(2) as the value for the reference OLED. These preliminary results show clearly that the functionalized biopolymer, biodegradable, biocompatible bacterial cellulose membranes can be successfully used as substrate in flexible organic optoelectronic devices. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Malnutrition is related to diabetes in tropical countries. In experimental animals, protein deficiency may affect insulin secretion. However, the effect of malnutrition on insulin receptor phosphorylation and further intracellular signaling events is not known. Therefore, we decided to evaluate the rate of insulin secretion and the early molecular steps of insulin action in insulin-sensitive tissues of an animal model of protein deficiency. Pancreatic islets isolated from rats fed a standard (17%) or a low (6%) protein diet were studied for their secretory response to increasing concentrations of glucose in the culture medium. Basal as well as maximal rates of insulin secretion were significantly lower in the islets isolated from rats fed a low protein diet. Moreover, the dose-response curve to glucose was significantly shifted to the right in the islets from malnourished rats compared with islets from control rats. During an oral glucose tolerance test, there were significantly lower circulating concentrations of insulin in the serum of rats fed a low protein diet in spite of no difference in serum glucose concentration between the groups, suggesting an increased peripheral insulin sensitivity. Immunoblotting and immunoprecipitation were used to study the phosphorylation of the insulin receptor and the insulin receptor substrate-1 as well as the insulin receptor substrate-1-p85 subunit of phosphatidylinositol 3-kinase association in response to insulin. Values were greater in hind-limb muscle from rats fed a low protein diet compared with controls. No differences were detected in the total amount of protein corresponding to the insulin receptor or insulin receptor substrate-1 between muscle from rats fed the two diets. Therefore, we conclude that a decreased glucose-induced insulin secretion in pancreatic islets from protein-malnourished rats is responsible, at least in part, for an increased phosphorylation of the insulin receptor, insulin receptor substrate-1 and its association with phosphatidylinositol 3-kinase. These might represent some of the factors influencing the equilibrium in glucose concentrations observed in animal models of malnutrition and undernourished subjects.