889 resultados para single-blind method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wavelength tunable electro-absorption modulated distributed Bragg reflector lasers (TEMLs) are promising light source in dense wavelength division multiplexing (DWDM) optical fiber communication system due to high modulation speed, small chirp, low drive voltage, compactness and fast wavelength tuning ability. Thus, increased the transmission capacity, the functionality and the flexibility are provided. Materials with bandgap difference as large as 250nm have been integrated on the same wafer by a combined technique of selective area growth (SAG) and quantum well intermixing (QWI), which supplies a flexible and controllable platform for the need of photonic integrated circuits (PIC). A TEML has been fabricated by this technique for the first time. The component has superior characteristics as following: threshold current of 37mA, output power of 3.5mW at 100mA injection and 0V modulator bias voltage, extinction ratio of more than 20 dB with modulator reverse voltage from 0V to 2V when coupled into a single mode fiber, and wavelength tuning range of 4.4nm covering 6 100-GHz WDM channels. A clearly open eye diagram is observed when the integrated EAM is driven with a 10-Gb/s electrical NRZ signal. A good transmission characteristic is exhibited with power penalties less than 2.2 dB at a bit error ratio (BER) of 10(-10) after 44.4 km standard fiber transmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of structure parameters on bend loss of rib silicon-on-insulator (Sol) bend waveguides have been analyzed by means of effective index method (EIM) and 2D bend loss formula. The simulation results indicate that the bend loss decreases with the increase of bend radius and waveguide width, as well as with the decrease of the step factor of the rib waveguide. Moreover, the optional structure parameters have been found when bend waveguides are single-mode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the effect of an external biaxial stress on the light emission of single InGaAs/GaAs(001) quantum dots placed onto piezoelectric actuators. With increasing compression, the emission blueshifts and the binding energies of the positive trion (X+) and biexciton (XX) relative to the neutral exciton (X) show a monotonic increase. This phenomenon is mainly ascribed to changes in electron and hole localization and it provides a robust method to achieve color coincidence in the emission of X and XX, which is a prerequisite for the possible generation of entangled photon pairs via the recently proposed "time reordering'' scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High quality silicon nanowires (SiNWs) were grown directly from n-(111) silicon single crystal substrate by using Au film as a metallic catalyst. The diameter and length of the formed nanowires are 30-60 nm and from several micrometers to sereral tens of micrometers, respectively. The effects of Au film thickness, annealing temperature, growth time and N-2 gas flow rate on the formation of the nanowires were experimentally investigated. The results confirmed that the silicon nanowires with controlled diameter, length, shape and orientation can be obtained via reasonably choosing and optimizing various technical conditions. The formation process of the silicon nanowires is analyzed qualitatively based on solid-liquid-solid growth mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon nanowires (SiNWs) were grown directly from n-(111) single-crystal silicon (c-Si) substrate based on a solid-liquid-solid mechanism, and Au film was used as a metallic catalyst. The room temperature photoluminescence properties of SiNWs were observed by an Xe lamp with an exciting wavelength of 350 nm. The results show that the SiNWs exhibit a strongly blue luminescent band in the wavelength range 400-480 nm at an emission peak position of 420 nm. The luminescent mechanism of SiNWs indicates that the blue luminescence is attributed to the oxygen-related defects, which are in SiOx amorphous oxide shells around the crystalline core of SiNWs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Condensation of steam in a single microchannel, silicon test section was investigated visually at low flow rates. The microchannel was rectangular in cross-section with a depth of 30 pm, a width of 800 mu m and a length of 5.0 mm, covered with a Pyrex glass to allow for visualization of the bubble formation process. By varying the cooling rate during condensation of the saturated water vapor, it was possible to control the shape, size and frequency of the bubbles formed. At low cooling rates using only natural air convection from the ambient environment, the flow pattern in the microchannel consisted of a nearly stable elongated bubble attached upstream (near the inlet) that pinched off into a train of elliptical bubbles downstream of the elongated bubble. It was observed that these elliptical bubbles were emitted periodically from the tip of the elongated bubble at a high frequency, with smaller size than the channel width. The shape of the emitted bubbles underwent modifications shortly after their generation until finally becoming a stable vertical ellipse, maintaining its shape and size as it flowed downstream at a constant speed. These periodically emitted elliptical bubbles thus formed an ordered bubble sequence (train). At higher cooling rates using chilled water in a copper heat sink attached to the test section, the bubble formation frequency increased significantly while the bubble size decreased, all the while forming a perfect bubble train flowing downstream of the microchannel. The emitted bubbles in this case immediately formed into a circular shape without any further modification after their separation from the elongated bubble upstream. The present study suggests that a method for controlling the size and generation frequency of microbubbles could be so developed, which may be of interest for microfluidic applications. The breakup of the elongated bubble is caused by the large Weber number at the tip of the elongated bubble induced by the maximum vapor velocity at the centerline of the microchannel inside the elongated bubble and the smaller surface tension force of water at the tip of the elongated bubble.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the full-vector plane-wave expansion method, a kind of PMMA-based polarization-maintaining microstructured optical fibre (PM-mPOF) is theoretically studied. Dependence of the cutoff wavelengths of the two orthogonal polarization states (polarized along the two principal axes of PM-mPOF) on the structure parameters of the fibre is investigated in detail. A single-polarization single-mode (SPSM) PM-mPOF working in the visible region is designed and optimized with the result of the maximum SPSM bandwidth of 140 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a method of effectively extending the stimulated Brillouin scattering (SBS) gain bandwidth in a single-mode optical fiber to reduce group-velocity-dispersion (GVD)-dependent pulse spread of SBS slow light. This can be done by overlapping doublet SBS gain spectra synthesized from a single pump laser. Numerical calculations are performed to verify our proposed method. We find that there exists the optimum spectral separation between two center frequencies of the doublet SBS gain spectrum with respect to the inherent spectral width of the pump laser, which makes it possible to effectively reduce the signal pulse broadening due to GVD. We show that the maximum time delay of the amplified signal pulse can be approximately two times longer than that by a previously reported method using a single broadband pump laser. (c) 2008 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rapid algorithm for phase and amplitude reconstruction from a single spatial-carrier interferogram is proposed by bringing a phase-shifting mechanism into reconstruction of a carrier-frequency interferogram. The algorithm reconstructs phase through directly obtaining and integrating its real-value derivatives, avoiding a phase unwrapping process. The proposed method is rapid and easy to implement and is made insensitive to the profile of the interferogram boundaries by choosing a suitable integrating path. Moreover, the algorithm can also be used to reconstruct the amplitude of the object wave expediently without retrieving the phase profile in advance. The feasibility of this algorithm is demonstrated by both numerical simulation and experiment. (c) 2008 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GaAs single crystals have been grown under high gravity conditions, up to 9g0, by a recrystallization method with decreasing temperature. The impurity striations in GaAs grown under high gravity become weak and indistinct with smaller striation spacings. The dislocation density of surcharge-grown GaAs increases with increase of centrifugal force. The cathodoluminescence results also show worse perfection in the GaAs grown at high gravity than at normal earth gravity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influences of microdefects and dislocations on the lattice parameters of undoped semi-insulating GaAs single crystals were analyzed, and a novel nondestructive method for measuring stoichiometry in undoped semi-insulating GaAs was established in this letter. The comparison of this method with coulometric titration indicates that the method of nondestructive measurements is indeed convenient and reliable. (C) 1996 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrathin single quantum well (about one monolayer) grown on GaAs(001) substrate with GaAs cap layer has been studied by high resolution x-ray diffractometer on a beamline of the Beijing Synchrotron Radiation Facility. The interference fringes on both sides of the GaAs(004) Bragg peak are asymmetric and a range of weak fringes in the higher angle side of the Bragg peak is observed. The simulated results by using the kinematical diffraction method shows that the weak fringe range appears in the higher angle side when the phase shift introduced by the single quantum well is very slightly smaller than m pi (m:integer), and vice versa. After introducing a reasonable model of single quantum well, the simulated pattern is in good agreement with the experiment. (C) 1996 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High concentrations of Si and Zn were implanted into (0001) AlN bulk crystal grown by the self-seeded physical vapor transport (PVT) method. Cathode luminescence (CL) and photoluminescence (PL) spectroscopy were used to investigate the defects and properties of the implanted AlN. PL spectra of the implanted AlN are dominated by a broad near-band luminescence peak between 200 and 254 nm. After high temperature annealing, implantation induced lattice damages are recovered and the PL intensity increases significantly, suggesting that the implanted impurity Si and Zn occupy lattice site of Al. CL results imply that a 457 nm peak is Al vacancy related. Resistance of the AlN samples is still very high after annealing, indicating a low electrical activation efficiency of the impurity in AlN single crystal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The defects and the lattice perfection of an AlN (0001) single crystal grown by the physical vapor transport (PVT) method were investigated by wet etching, X-ray diffraction (XRD), and infrared absorption, respectively. A regular hexagonal etch pit density (EPD) of about 4000 cm~(-2) is observed on the (0001) A1 surface of an AlN single crystal. The EPD exhibits a line array along the slip direction of the wurtzite structure, indicating a quite large thermal stress born by the crystal in the growth process. The XRD full width at half maximum (FWHM) of the single crystal is 35 arcsec, suggesting a good lattice perfection. Pronounced infrared absorption peaks are observed at wave numbers of 1790, 1850, 2000, and 3000 cm~(-1), respectively. These absorptions might relate to impurities O, C, Si and their complexes in AlN single crystals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose and fabricate an A1GaN/GaN high electron mobility transistor (HEMT) on sapphire substrate using a new kind of electron beam (EB) lithography layout for the T-gate. Using this new layout,we can change the aspect ratio (ratio of top gate dimension to gate length) and modify the shape of the T-gate freely. Therefore, we obtain a 0.18μm gate-length AlGaN/GaN HEMT with a unity current gain cutoff frequency (f_T) of 65GHz. The aspect ratio of the T-gate is 10. These single finger devices also exhibit a peak extrinsic transconductance of 287mS/mm and a maximum drain current as high as 980mA/mm.