999 resultados para shaft voltage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cortical bone is not a uniform tissue, and its apparent density [cortical volumetric density (vBMD)] varies around the bone cross-section as well as along the axial length of the bone. It is not yet known, whether the varying vBMD distribution is attributable to modulation in the predominant loads affecting bone. The aim of the present study was to compare the cortical bone mass distribution through the bone cortex (radial distribution) and around the center of mass (polar distribution) among 221 premenopausal women aged 17–40 years representing athletes involved in high impact, odd impact, high magnitude, repetitive low impact, repetitive non-impact sports and leisure time physical activity (referent controls). Bone cross-sections at the tibial mid-diaphysis were assessed with pQCT. Radial and polar vBMD distributions were analyzed in three concentric cortical divisions within the cortical envelope and in four cortical sectors originating from the center of the bone cross-section. MANCOVA, including age as a covariate, revealed no significant group by division/sector interaction in either radial or polar distribution, but the mean vBMD values differed between groups (P < 0.001). The high and odd-impact groups had 1.2 to 2.6% (P < 0.05) lower cortical vBMD than referents, in all analyzed sectors/divisions. The repetitive, low-impact group had 0.4 to 1.0% lower (P < 0.05) vBMD at the mid and outer cortical regions and at the anterior sector of the tibia. The high magnitude group had 1.2% lower BMD at the lateral sector (P < 0.05). The present results generate a hypothesis that the radial and polar cortical bone vBMD distributions within the tibial mid-shaft are not modulated by exercise loading but the mean vBMD level is slightly affected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a ramp dual-pulse actuation-voltage waveform that reduces actuation-voltage shift in capacitive microelectromechanical system (MEMS) switches. The proposed waveform as well as two reported waveforms (dual pulse, and novel dual-pulse) are analyzed using equivalent-circuit and equation models. Based on the analysis outcome, the paper provides a clear understanding of trapped charge density in the dielectric. The results show that the proposed actuation-voltage waveform successfully reduces trapped charge and increases lifetime due to lowering of actuation-voltage shift. Using the proposed actuation-voltage waveform, the membrane reaches a steady state on the electrode faster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a fast and accurate method for extracting the scattering parameters of a RF MEMS switch by using its essential parameters. A neural network is developed for parametric modeling of the switch. The essential parameters of the switch are analyzed in terms of its return loss and isolation with variation of its geometrical component values. Simulation results show that the proposed approach can be used to accurately model the RF characteristics of RF-MEMS switches. The results show good agreement between the neural network prediction and electromagnetic simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radio frequency micro electro mechanical systems (RF MEMS) have enabled a new generation of devices that bring many advantages due to their very high performances. There are many incentives for the integration of the RF MEMS switches and electronic devices on the same chip. However, the high actuation voltage of RF MEMS switches compared to electronic devices poses a major problem. By reducing the actuation voltage of the RF MEMS switch, it is possible to integrate it into current electronic devices. Lowering the actuation voltage will have an impact on RF parameters of the RF MEMS switches. This investigation focuses on recent progress in reducing the actuation voltage with an emphasis on a modular approach that gives acceptable design parameters. A number of rules that should be considered in design and fabrication of low actuation RF MEMS switches are suggested.