910 resultados para schooling, productivity effects, upper bound
Resumo:
To compare the effects of deflazacort (DEFLA) vs. prednisone (PRED) on bone mineral density (BMD), body composition, and lipids, 24 patients with end-stage renal disease were randomized in a double blind design and followed 78 weeks after kidney transplantation. BMD and body composition were assessed using dual energy x-ray absorptiometry. Seventeen patients completed the study. Glucocorticosteroid doses, cyclosporine levels, rejection episodes, and drop-out rates were similar in both groups. Lumbar BMD decreased more in PRED than in DEFLA (P < 0.05), the difference being particularly marked after 24 weeks (9.1 +/- 1.8% vs. 3.0 +/- 2.4%, respectively). Hip BMD decreased from baseline in both groups (P < 0.01), without intergroup differences. Whole body BMD decreased from baseline in PRED (P < 0.001), but not in DEFLA. Lean body mass decreased by approximately 2.5 kg in both groups after 6-12 weeks (P < 0.001), then remained stable. Fat mass increased more (P < 0.01) in PRED than in DEFLA (7.1 +/- 1.8 vs. 3.5 +/- 1.4 kg). Larger increases in total cholesterol (P < 0.03), low density lipoprotein cholesterol (P < 0.01), lipoprotein B2 (P < 0.03), and triglycerides (P = 0.054) were observed in PRED than in DEFLA. In conclusion, using DEFLA instead of PRED in kidney transplant patients is associated with decreased loss of total skeleton and lumbar spine BMD, but does not alter bone loss at the upper femur. DEFLA also helps to prevent fat accumulation and worsening of the lipid profile.
Resumo:
Plant species richness of permanent grasslands has often been found to be significantly associated with productivity. Concentrations of nutrients in biomass can give further insight into these productivity- plant species richness relationships, e.g. by reflecting land use or soil characteristics. However, the consistency of such relationships across different regions has rarely been taken into account, which might significantly compromise our potential for generalization. We recorded plant species richness and measured above-ground biomass and concentrations of nutrients in biomass in 295 grasslands in three regions in Germany that differ in soil and climatic conditions. Structural equation modelling revealed that nutrient concentrations were mostly indirectly associated with plant species richness via biomass production. However, negative associations between the concentrations of different nutrients and biomass and plant species richness differed considerably among regions. While in two regions, more than 40% of the variation in plant species richness could be attributed to variation in biomass, K, P, and to some degree also N concentrations, in the third region only 15% of the variation could be explained in this way. Generally, highest plant species richness was recorded in grasslands where N and P were co-limiting plant growth, in contrast to N or K (co-) limitation. But again, this pattern was not recorded in the third region. While for two regions land-use intensity and especially the application of fertilizers are suggested to be the main drivers causing the observed negative associations with productivity, in the third region the little variance accounted for, low species richness and weak relationships implied that former intensive grassland management, ongoing mineralization of peat and fluctuating water levels in fen grasslands have overruled effects of current land-use intensity and productivity. Finally, we conclude that regional replication is of major importance for studies seeking general insights into productivity-diversity relationships.
Resumo:
During the second half of the 20th century untreated sewage released from housing and industry into natural waters led to a degradation of many freshwater lakes and reservoirs worldwide. In order to mitigate eutrophication, wastewater treatment plants, including Fe-induced phosphorus precipitation, were implemented throughout the industrialized world, leading to reoligotrophication in many freshwater lakes. To understand and assess the effects of reoligotrophication on primary productivity, we analyzed 28 years of 14C assimilation rates, as well as other biotic and abiotic parameters, such as global radiation, nutrient concentrations and plankton densities in peri-alpine Lake Lucerne, Switzerland. Using a simple productivity-light relationship, we estimated continuous primary production and discussed the relation between productivity and observed limnological parameters. Furthermore, we assessed the uncertainty of our modeling approach based on monthly 14C assimilation measurements using Monte Carlo simulations. Results confirm that monthly sampling of productivity is sufficient for identifying long-term trends in productivity and that conservation management has successfully improved water quality during the past three decades via reducing nutrients and primary production in the lake. However, even though nutrient concentrations have remained constant in recent years, annual primary production varies significantly from year to year. Despite the fact that nutrient concentrations have decreased by more than an order of magnitude, primary production has decreased only slightly. These results suggest that primary production correlates well to nutrients availability but meteorological conditions lead to interannual variability regardless of the trophic status of the lake. Accordingly, in oligotrophic freshwaters meteorological forcing may reduce productivity impacting on the entire food chain of the ecosystem.
Resumo:
AIM To compare dentoskeletal and soft tissue treatment effects of two alternative Class II division 1 treatment modalities (maxillary first permanent molar extraction versus Herbst appliance). METHODS One-hundred-fifty-four Class II division 1 patients that had either been treated with extractions of the upper first molars and a lightwire multibracket (MB) appliance (n = 79; 38 girls, 41 boys) or non-extraction by means of a Herbst-MB appliance (n = 75; 35 girls, 40 boys). The groups were matched on age and sex. The average age at the start of treatment was 12.7 years for the extraction and for 13.0 years for the Herbst group. Pretreatment (T1) and posttreatment (T2) lateral cephalograms were retrospectively analyzed using a standard cephalometric analysis and the sagittal occlusal analysis according to Pancherz. RESULTS The SNA decrease was 1.10° (p = 0.001) more pronounced in the extraction group, the SNB angle increased 1.49° more in the Herbst group (p = 0.000). In the extraction group, a decrease in SNB angle (0.49°) was observed. The soft tissue profile convexity (N-Sn-Pog) decreased in both groups, which was 0.78° more (n. s.) pronounced in the Herbst group. The nasolabial angle increased significantly more (+ 2.33°, p = 0.025) in the extraction group. The mechanism of overjet correction in the extraction group was predominantly dental (65% dental and 35% skeletal changes), while in the Herbst group it was predominantly skeletal (58% skeletal and 42% dental changes) in origin. CONCLUSION Both treatment methods were successful and led to a correction of the Class II division 1 malocclusion. Whereas for upper first molar extraction treatment more dental and maxillary effects can be expected, in case of Herbst treatment skeletal and mandibular effects prevail.
Resumo:
To determine environmental, soil, and sward effects at the initiation of cattle grazing in the spring on seasonal (forage accumulated during the grazing season) and cumulative (seasonal + initial forage mass) forage accumulation (FA), 15 commercial cow-calf producers from southern Iowa were selected by historical initial grazing date. At grazing initiation, twelve .25-m2 samples were hand-clipped from each pasture and sward heights (SH) measured with a falling plane meter (4.8 kg/m2) to determine initial forage mass. At each location, soil temperature and load bearing capacity (LBC) were measured and a soil sample was collected to measure pH and moisture, P, and K concentrations. Cumulative degree-days (base=3.85°C) and precipitation at grazing initiation were calculated from NOAA records. At the beginning of each month, at least three grazing exclosures were placed on each grazed pasture to determine monthly FA. SH in each exclosure was recorded, and a .25-m2 forage sample was hand-clipped proximate to each exclosure. At the end of each month, SH was recorded and .25-m2 hand-clipped forage samples from inside exclosures were obtained. In linear regressions, cumulative and seasonal SH increased with greater soil P (r2=.5049 and .5417), soil K (r2=.4675 and .4397), and initial forage mass (r2=.1984 and .2801). Seasonal SH increased with earlier initial grazing dates (r2=.1996) and less accumulated degree-days (r2=.2364). Cumulative and seasonal FA increased with earlier initial grazing dates (r2=.2106 and .3744), lower soil temperatures (r2=.2617 and.2874), and greater soil P (r2=.3489 and .2598). Cumulative FA increased with greater soil K (r2=.4675). In quadratic regressions, cumulative and seasonal SH were correlated to soil P (r2=.6310 and .5310) and soil K (r2=.5095 and.4401). Cumulative and seasonal FA were correlated to degree days (r2=.3630 and.4013) and initial grazing date (r2=.3425 and .4088). Cumulative FA was correlated to soil P (r2=.3539), and seasonal FA was correlated to soil moisture (r2=.3688).
Resumo:
One non bt-corn hybrid (Pioneer 3489) and three btcorn hyrids (Pioneer 34RO7, Novartis NX6236, and Novartis N64-Z4) were planted in replicated 7.1-acre fields. After grain harvest, fields were stocked with 3 mature cows in midgestation to be strip-grazed as four paddocks over 126 days. Six similar cows were allotted to replicated drylots. All cows were fed hay as necessary to maintain a condition score of 5 on a 9-point scale. Cows were condition-scored biweekly and weighed monthly. Forage yield and weathering losses were determined by sampling one 4-m2 location per grazed or ungrazed paddock in each field with a minimum total of 2 locations of grazed or ungrazed forage per field. To measure forage selection during grazing, samples of grazed forage were collected from the rumen of one fistulated steer that grazed for 2 hours after ruminal evacuation. Non-bt-corn hybrids had greater (P<.05) infestation of corn borers in the upper stalk, lower stalk and ear shank than bt-corn hybrids. However, there were no differences in grain yields or dropped grain between hybrids. Crop residue dry matter, organic matter and in vitro digestible dry matter yields at the initiation of grazing did not differ between corn hybrids. Dry matter, organic matter and in vitro digestible dry matter losses tended (P<.10) to be greater from the NX6236 and N64-Z4 hybrids than from the 3489 and 34RO7 hybrids and were greater (P<.05) from grazed than non-grazed areas of the fields. At the initiation of grazing, dry matter concentrations of the crop residues from the NX6236 and N64-Z4 hybrids tended to be lower than those from the 3489 and 34RO7 hybrids. Crop residues from the NX6236 and N64-74 hybrids had lower concentrations of acid detergent fiber (P<.05) and acid detergent lignin (P=.07) and higher concentrations of in vitro digestible organic matter than the 3489 and 34RO7 hybrids. Over the grazing season, corn hybrid did not affect mean rates of change in forage composition. The concentration of in vitro digestible organic matter in forage selected by steers after two weeks of grazing did not differ. However, steers grazing corn crop residues consumed forage with higher (P<.05) concentrations of neutral detergent fiber, acid detergent fiber, and acid detergent insoluble nitrogen than steers fed hay. The acid detergent fiber concentration of forage selected by steers grazing the 3489 and N64-Z4 hybrids was lower (P < .05) than concentrations from the 34RO7 and NX6236 hybrids. In order to maintain similar body condition score changes, cows grazing crop residues from the 3489, 34RO7, NX6236, and N64-Z4 hybrids required 650, 628, 625, and 541 kg hay DM/cow compared with a hay requirement of 1447 kg hay DM/cow for cows maintained in a drylot.
Resumo:
Biological diversity within species can be an important driver of population and ecosystem functioning. Until now, such within-species diversity effects have been attributed to underlying variation in DNA sequence. However, within-species differences, and thus potentially functional biodiversity, can also be created by epigenetic variation. Here, we show that epigenetic diversity increases the productivity and stability of plant populations. Epigenetically diverse populations of Arabidopsis thaliana produce up to 40% more biomass than epigenetically uniform populations. The positive epigenetic diversity effects are strongest when populations are grown together with competitors and infected with pathogens, and they seem to be partly driven by complementarity among epigenotypes. Our study has two implications: first, we may need to re-evaluate previous within-species diversity studies where some effects could reflect epigenetic diversity; second, we need to incorporate epigenetics into basic ecological research, by quantifying natural epigenetic diversity and testing for its ecological consequences across many different species.
Resumo:
BACKGROUND Pelvic inflammatory disease (PID) results from the ascending spread of microorganisms, including Chlamydia trachomatis, to the upper genital tract. Screening could improve outcomes by identifying and treating chlamydial infections before they progress to PID (direct effect) or by reducing chlamydia transmission (indirect effect). METHODS We developed a compartmental model that represents a hypothetical heterosexual population and explicitly incorporates progression from chlamydia to clinical PID. Chlamydia screening was introduced, with coverage increasing each year for 10 years. We estimated the separate contributions of the direct and indirect effects of screening on PID cases prevented per 100,000 women. We explored the influence of varying the time point at which clinical PID could occur and of increasing the risk of PID after repeated chlamydial infections. RESULTS The probability of PID at baseline was 3.1% by age 25 years. After 5 years, the intervention scenario had prevented 187 PID cases per 100,000 women and after 10 years 956 PID cases per 100,000 women. At the start of screening, most PID cases were prevented by the direct effect. The indirect effect produced a small net increase in PID cases, which was outweighed by the effect of reduced chlamydia transmission after 2.2 years. The later that progression to PID occurs, the greater the contribution of the direct effect. Increasing the risk of PID with repeated chlamydial infection increases the number of PID cases prevented by screening. CONCLUSIONS This study shows the separate roles of direct and indirect PID prevention and potential harms, which cannot be demonstrated in observational studies.
Resumo:
BACKGROUND: Several clinical studies on chronic stroke conducted with end-effector-based robots showed improvement of the motor function in the affected arm. Compared to end-effector-based robots, exoskeleton robots provide improved guidance of the human limb and are better suited to train task-oriented movements with a large range of motions. OBJECTIVE: To test whether intensive arm training with the arm exoskeleton ARMin I is feasible with chronic-stroke patients and whether it improves motor function in the paretic arm. METHODS: Three single cases with chronic hemiparesis resulting from unilateral stroke (at least 14 months after stroke). A-B design with 2 weeks of multiple baseline measurements (A), 8 weeks of training (B) with repetitive measurements and a follow-up measurement 8 weeks after training. The training included shoulder and elbow movements with the robotic rehabilitation device ARMin I. Two subjects had three 1-hour sessions per week and 1 subject received five 1-hour sessions per week. The main outcome measurement was the upper-limb part of the Fugl-Meyer Assessment (FMA). RESULTS: The ARMin training was well tolerated by the patients, and the FMA showed moderate, but significant improvements for all 3 subjects (p < 0.05). Most improvements were maintained 8 weeks after discharge. CONCLUSIONS: This study indicates that intensive training with an arm exoskeleton is feasible with chronic-stroke patients. Moderate improvements were found in all 3 subjects, thus further clinical investigations are justified.
Resumo:
BACKGROUND: Robot-assisted therapy offers a promising approach to neurorehabilitation, particularly for severely to moderately impaired stroke patients. The objective of this study was to investigate the effects of intensive arm training on motor performance in four chronic stroke patients using the robot ARMin II. METHODS: ARMin II is an exoskeleton robot with six degrees of freedom (DOF) moving shoulder, elbow and wrist joints. Four volunteers with chronic (>or= 12 months post-stroke) left side hemi-paresis and different levels of motor severity were enrolled in the study. They received robot-assisted therapy over a period of eight weeks, three to four therapy sessions per week, each session of one hour.Patients 1 and 4 had four one-hour training sessions per week and patients 2 and 3 had three one-hour training sessions per week. Primary outcome variable was the Fugl-Meyer Score of the upper extremity Assessment (FMA), secondary outcomes were the Wolf Motor Function Test (WMFT), the Catherine Bergego Scale (CBS), the Maximal Voluntary Torques (MVTs) and a questionnaire about ADL-tasks, progress, changes, motivation etc. RESULTS: Three out of four patients showed significant improvements (p < 0.05) in the main outcome. The improvements in the FMA scores were aligned with the objective results of MVTs. Most improvements were maintained or even increased from discharge to the six-month follow-up. CONCLUSION: Data clearly indicate that intensive arm therapy with the robot ARMin II can significantly improve motor function of the paretic arm in some stroke patients, even those in a chronic state. The findings of the study provide a basis for a subsequent controlled randomized clinical trial.
Resumo:
Understanding the homing behavior of Atlantic salmon Salmo salar is vital to the restoration program employed on the Penobscot River, Maine. To produce significant adult returns, managers currently stock hatchery-raised smolts in specific river sections, providing smolts the opportunity to imprint on chemical signals and enabling their return to productive spawning and rearing habitat as adults. In this study, we used observational evidence from passive integrated transponder telemetry to determine whether adults returning from smolt stockings behaved in a way that suggested strong homing to smolt stocking locations. Adults returning from smolt stocking locations located in or at the mouth of the Piscataquis River were more likely to be detected as entering the Piscataquis River than were adults returning from the upper Penobscot River smolt stocking locations. In general, returning adult Atlantic salmon that had been stocked near or in tributaries as smolts chose a path more quickly than those that had been stocked in more downstream or main-stem locations. These results suggest that Atlantic salmon smolts should be stocked at specific sites with superior habitat for spawning kind juvenile survival to capitalize on the strong homing tendency in adults. This technique call also be utilized to allow for natural selection and the development of localized stocks.
Resumo:
Many plant species are able to tolerate severe disturbance leading to removal of a substantial portion of the body by resprouting from intact or fragmented organs. Resprouting enables plants to compensate for biomass loss and complete their life cycles. The degree of disturbance tolerance, and hence the ecological advantage of damage tolerance (in contrast to alternative strategies), has been reported to be affected by environmental productivity. In our study, we examined the influence of soil nutrients (as an indicator of environmental productivity) on biomass and stored carbohydrate compensation after removal of aboveground parts in the perennial resprouter Plantago lanceolata. Specifically, we tested and compared the effects of nutrient availability on biomass and carbon storage in damaged and undamaged individuals. Damaged plants of P. lanceolata compensated neither in terms of biomass nor overall carbon storage. However, whereas in the nutrient-poor environment, root total non-structural carbohydrate concentrations (TNC) were similar for damaged and undamaged plants, in the nutrient-rich environment, damaged plants had remarkably higher TNC than undamaged plants. Based on TNC allocation patterns, we conclude that tolerance to disturbance is promoted in more productive environments, where higher photosynthetic efficiency allows for successful replenishment of carbohydrates. Although plants under nutrient-rich conditions did not compensate in terms of biomass or seed production, they entered winter with higher content of carbohydrates, which might result in better performance in the next growing season. This otherwise overlooked compensation mechanism might be responsible for inconsistent results reported from other studies.
Resumo:
Genetic predispositions for guttural pouch tympany, recurrent laryngeal neuropathy and recurrent airway obstruction (RAO) are well documented. There is also evidence that exercise-induced pulmonary haemorrhage and infectious diseases of the respiratory tract in horses have a genetic component. The clinical expression of equine respiratory diseases with a genetic basis results from complex interactions between the environment and the genetic make-up of each individual horse. The genetic effects are likely to be due to variations in several genes, i.e. they are polygenic. It is therefore unlikely that single gene tests will be diagnostically useful in these disorders. Genetic profiling panels, combining several genetic factors with an assessment of environmental risk factors, may have greater value, but much work is still needed to uncover diagnostically useful genetic markers or even causative variants for equine respiratory diseases. Nonetheless, chromosomal regions associated with guttural pouch tympany, recurrent laryngeal neuropathy and RAO have been identified. The association of RAO with other hypersensitivities and with resistance to intestinal parasites requires further study. This review aims to provide an overview of the available data and current thoughts on the genetics of equine airway diseases.
Resumo:
BACKGROUND Dimethyl sulfoxide (DMSO) is essential for the preservation of liquid nitrogen-frozen stem cells, but is associated with toxicity in the transplant recipient. STUDY DESIGN AND METHODS In this prospective noninterventional study, we describe the use of DMSO in 64 European Blood and Marrow Transplant Group centers undertaking autologous transplantation on patients with myeloma and lymphoma and analyze side effects after return of DMSO-preserved stem cells. RESULTS While the majority of centers continue to use 10% DMSO, a significant proportion either use lower concentrations, mostly 5 or 7.5%, or wash cells before infusion (some for selected patients only). In contrast, the median dose of DMSO given (20 mL) was much less than the upper limit set by the same institutions (70 mL). In an accompanying statistical analysis of side effects noted after return of DMSO-preserved stem cells, we show that patients in the highest quartile receiving DMSO (mL and mL/kg body weight) had significantly more side effects attributed to DMSO, although this effect was not observed if DMSO was calculated as mL/min. Dividing the myeloma and lymphoma patients each into two equal groups by age we were able to confirm this result in all but young myeloma patients in whom an inversion of the odds ratio was seen, possibly related to the higher dose of melphalan received by young myeloma patients. CONCLUSION We suggest better standardization of preservation method with reduced DMSO concentration and attention to the dose of DMSO received by patients could help reduce the toxicity and morbidity of the transplant procedure.
Resumo:
PURPOSE To systematically evaluate the dependence of intravoxel-incoherent-motion (IVIM) parameters on the b-value threshold separating the perfusion and diffusion compartment, and to implement and test an algorithm for the standardized computation of this threshold. METHODS Diffusion weighted images of the upper abdomen were acquired at 3 Tesla in eleven healthy male volunteers with 10 different b-values and in two healthy male volunteers with 16 different b-values. Region-of-interest IVIM analysis was applied to the abdominal organs and skeletal muscle with a systematic increase of the b-value threshold for computing pseudodiffusion D*, perfusion fraction Fp , diffusion coefficient D, and the sum of squared residuals to the bi-exponential IVIM-fit. RESULTS IVIM parameters strongly depended on the choice of the b-value threshold. The proposed algorithm successfully provided optimal b-value thresholds with the smallest residuals for all evaluated organs [s/mm2]: e.g., right liver lobe 20, spleen 20, right renal cortex 150, skeletal muscle 150. Mean D* [10(-3) mm(2) /s], Fp [%], and D [10(-3) mm(2) /s] values (±standard deviation) were: right liver lobe, 88.7 ± 42.5, 22.6 ± 7.4, 0.73 ± 0.12; right renal cortex: 11.5 ± 1.8, 18.3 ± 2.9, 1.68 ± 0.05; spleen: 41.9 ± 57.9, 8.2 ± 3.4, 0.69 ± 0.07; skeletal muscle: 21.7 ± 19.0; 7.4 ± 3.0; 1.36 ± 0.04. CONCLUSION IVIM parameters strongly depend upon the choice of the b-value threshold used for computation. The proposed algorithm may be used as a robust approach for IVIM analysis without organ-specific adaptation. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.