795 resultados para primary science teaching
Resumo:
This article assesses undergraduate teaching students’ assertion that there are no right and wrong answers in teaching philosophy. When asked questions about their experiences of philosophy in the classroom for primary children, their unanimous declaration that teaching philosophy has ‘no right and wrong answers’ is critically examined across the three sub-disciplinary areas to which they were generally referring, namely, pedagogy, ethics, and epistemology. From a pedagogical point of view, it is argued that some teaching approaches may indeed be more effective than others, and some pupils’ opinions less defensible, but pedagogically, in terms of managing the power relations in the classroom, it is counter-productive to continually insist on notions of truth and falsity at every point. From an ethical point of view, it is contended that anti-realist approaches to meta-ethics may represent a viable intellectual position, but from the point of view of normative ethics, notions of right and wrong still retain significant currency. From an epistemological point of view, it is argued using Karl Poppers’ work that while it may be difficult to determine what constitutes a right answer, determining a wrong one is far more straightforward. In conclusion, it is clear that prospective teachers engaging in philosophy in the classroom, and also future teachers in general, require a far more nuanced philosophical understanding of the notions of right and wrong and truth and falsity. In view of this situation, it we wish to promote the effective teaching of philosophical thinking to children, or produce educators who can understand the conceptual limits of the claims they make and their very real and often serious practical and social consequences, it is recommended that philosophy be reinstated to a fundamental, foundational place within the pre-service teaching curriculum.
Resumo:
The increase in the availability and use of portable mobile devices has had a number of impacts on society. In particular, this impact has been seen within Higher Education Institutions where staff and students are using these devices for both simple and complex tasks. Within undergraduate teacher education courses there is an expectation that students will be fully prepared for teaching their respective areas of expertise as well as having the ability to use ICT, and in particular portable mobile devices, to support teaching and learning. This paper reports on a small case study into the use of portable mobile devices in a science unit, where the students (N=16) bring their own devices into the classroom and use them in lectures, tutorials and workshops. The study highlights the changing nature of classroom practice within the university setting and the challenges faced by teaching staff and students when using these devices.
Resumo:
BACKGROUND There is little doubt that our engineering graduates’ ability to identify cultural differences and their potential to impact on engineering projects, and to work effectively with these differences is of key importance in the modern engineering practice. Within engineering degree programs themselves there is also a significant need to recognise the impact of changing student and staff profiles on what happens in the classroom. The research described in this paper forms part of a larger project exploring issues of intercultural competence in engineering. PURPOSE This paper presents an observational and survey study of undergraduate and postgraduate engineering students from four institutions working in groups on tasks with a purely technical focus, or with a cultural and humanitarian element. The study sought to explore how students rate their own intercultural competence and team process and whether any differences exist depending on the nature of the task they are working on. We also investigated whether any differences were evident between groups of first year, second year and postgraduate students. DESIGN/METHOD The study used the miniCQS instrument (Ang & Van Dyne, 2008) and a Bales Interaction Process Analysis based scale (Bales, 1950; Carney, 1976) to collect students self ratings of group process, task management, and cultural experience and behaviour. The Bales IPA was also used for coding video observations of students working in groups. Survey data were used to form descriptive variables to compare outcomes across the different tasks and contexts. Observations analysed in Nvivo were used to provide commentary and additional detail on the quantitative data. RESULTS The results of the survey indicated consistent mean scores on each survey item for each group of students, despite vastly different tasks, student backgrounds and educational contexts. Some small, statistically significant mean differences existed, offering some basic insights into how task and student group composition could affect self ratings. Overall though, the results suggest minimal shift in how students view group function and their intercultural experience, irrespective of differing educational experience. CONCLUSIONS The survey results, contrasted with group observations, indicate that either students are not translating their experience (in the group tasks) into critical self assessment of their cultural competence and teamwork, or that they become more critical of team performance and cultural competence as their competence in these areas grows, so their ratings remain consistent. Both outcomes indicate that students need more intensive guidance to build their critical self and peer assessment skills in these areas irrespective of their year level of study.
Resumo:
Five Canadian high school Chemistry classes in one school, taught by three different teachers, studied the concepts of dynamic chemical equilibria and Le Chatelier’s Principle. Some students received traditional teacher-led explanations of the concept first and used an interactive scientific visualisation second, while others worked with the visualisation first and received the teacher-led explanation second. Students completed a test of their conceptual understanding of the relevant concepts prior to instruction, after the first instructional session and at the end of instruction. Data on students’ academic achievement (highest, middle or lowest third of the class on the mid-term exam) and gender were also collected to explore the relationship between these factors, conceptual development and instructional sequencing. Results show, within this context at least, that teaching sequence is not important in terms of students’ conceptual learning gains.
Resumo:
This is the project report of a leadership project undertaken jointly by the Queensland University of Technology, University of Technology Sydney, and Monash University. Specific project objectives were to: -To build leadership capacity in teaching and learning, and to improve teaching quality in ICT and Engineering disciplines at three leading Australian universities, and -To facilitate the transference of research leadership to T&L leadership, and disseminate this transference model developed through the project within the Engineering and ICT domains to other disciplines and universities.
Resumo:
Science is often considered as one of the cornerstones of human advancement. Despite its importance in our society, science as a subject in schools appears to be losing ground. Lack of relevance, the nature of the curriculum and the pedagogical approach to teaching are some of the reasons which researchers believe are causing a “swing” away from science. This paper will argue for the effectiveness of simple science demonstrations as a feasible pedagogical option with a high task value and which has the potential to reengage and reinvigorate student interest in the subject. This paper describes a case study (N = 25) in which the Integrative problem based learning model for science was implemented in a year nine science class. The study was conducted at a secondary school in Australia. Teacher demonstrations were situated in classroom activities in a “Why is it so?” problem/question format. Qualitative data gathered from students demonstrated a number of benefits of this approach. This paper then explores ways in which Web 2.0 technologies could be incorporated to enhance the value of science demonstrations
Resumo:
This article outlines the integration of robotics in two settings in a primary school. This initiative was part of an Australian Research Council project which was undertaken at this school. The article highlights how robotics was integrated in a technology unit in a year four class. It also explains how it was embedded into an after-school program which catered for students from years five to seven. From these experiences further possibilities of engaging with robotics are also discussed.
Resumo:
Since 2004, the Australian Learning and Teaching Council (ALTC) and its predecessor, the Carrick Institute for Learning and Teaching in Higher Education, have funded numerous teaching and educational research-based projects in the Mathematical Sciences. In light of the Commonwealth Government’s decision to close the ALTC in 2011, it is appropriate to take account of the ALTCs input into the Mathe- matical Sciences in higher education. Here we present an overview of ALTC projects in the Mathematical Sciences, as well as report on the contributions they have made to the Discipline.
Resumo:
Process-oriented thinking has become the major paradigm for managing companies and other organizations. The push for better processes has been even more intense due to rapidly evolving client needs, borderless global markets and innovations swiftly penetrating the market. Thus, education is decisive for successfully introducing and implementing Business Process Management (BPM) initiatives. However, BPM education has been an area of challenge. This special issue aims to provide current research on various aspects of BPM education. It is an initial effort for consolidating better practices, experiences and pedagogical outcomes founded with empirical evidence to contribute towards the three pillars of education: learning, teaching, and disseminating knowledge in BPM.
Resumo:
Reflection is an essential part of being an effective learner and working as a productive teacher. It enables the learner or teacher to deliberate about the factors that lead to successful learning and teaching for them and/or their students, in a particular place and for a specific purpose, so they can make reasoned and effective choices. This chapter introduces important frameworks that cover a century of thinking around reflection in education, and illustrates how preservice teachers can use these ideas across three phases. First, becoming a reflective learner as a university student to enhance learning and assessment outcomes; second, becoming a reflective teacher to improve classroom teaching and learning outcomes; and third, developing the reflective capacities of primary students so they can enhance their skills for lifelong learning.
Resumo:
Since 2000 there has been pressure on education systems for develop in students a number of competences that are described as generic. This pressure stems from studies of the changing nature of work in the Knowledge Society that is now so dominant. The DeSeCo project identified a number of these competences, and listed them under the headings of communicative, analytical and personal. They include thinking, creativity, communication skills, knowing how to learn, working in teams, adapting to change, and problem solving. These competences pose a substantial challenge to the manner in which education as a whole, and science education in particular, has hitherto been generally conceived. It is now common to find their importance acknowledged in new formulation of the curriculum. The paper reviews a number of these curriculum documents and how they have tried to relate these competences to the teaching and learning of Science, a subject with its own very specific content for learning. It will be suggested that the challenge provides an opportunity for a reconstruction of the teaching and learning of science in schools that will increase its effectiveness for more students.
Resumo:
Australian universities are currently engaging with new governmental policies and regulations that require them to demonstrate enhanced quality and accountability in teaching and research. The development of national academic standards for learning outcomes in higher education is one such instance of this drive for excellence. These discipline-specific standards articulate the minimum, or Threshold Learning Outcomes, to be addressed by higher education institutions so that graduating students can demonstrate their achievement to their institutions, accreditation agencies, and industry recruiters. This impacts not only on the design of Engineering courses (with particular emphasis on pedagogy and assessment), but also on the preparation of academics to engage with these standards and implement them in their day-to-day teaching practice on a micro level. This imperative for enhanced quality and accountability in teaching is also significant at a meso level, for according to the Australian Bureau of Statistics, about 25 per cent of teachers in Australian universities are aged 55 and above and more than 54 per cent are aged 45 and above (ABS, 2006). A number of institutions have undertaken recruitment drives to regenerate and enrich their academic workforce by appointing capacity-building research professors and increasing the numbers of early- and mid-career academics. This nationally driven agenda for quality and accountability in teaching permeates also the micro level of engineering education, since the demand for enhanced academic standards and learning outcomes requires both a strong advocacy for a shift to an authentic, collaborative, outcomes-focused education and the mechanisms to support academics in transforming their professional thinking and practice. Outcomes-focused education means giving greater attention to the ways in which the curriculum design, pedagogy, assessment approaches and teaching activities can most effectively make a positive, verifiable difference to students’ learning. Such education is authentic when it is couched firmly in the realities of learning environments, student and academic staff characteristics, and trustworthy educational research. That education will be richer and more efficient when staff works collaboratively, contributing their knowledge, experience and skills to achieve learning outcomes based on agreed objectives. We know that the school or departmental levels of universities are the most effective loci of changes in approaches to teaching and learning practices in higher education (Knight & Trowler, 2000). Heads of Schools are being increasingly entrusted with more responsibilities - in addition to setting strategic directions and managing the operational and sometimes financial aspects of their school, they are also expected to lead the development and delivery of the teaching, research and other academic activities. Guiding and mentoring individuals and groups of academics is one critical aspect of the Head of School’s role. Yet they do not always have the resources or support to help them mentor staff, especially the more junior academics. In summary, the international trend in undergraduate engineering course accreditation towards the demonstration of attainment of graduate attributes poses new challenges in addressing academic staff development needs and the assessment of learning. This paper will give some insights into the conceptual design, implementation and empirical effectiveness to date, of a Fellow-In-Residence Engagement (FIRE) program. The program is proposed as a model for achieving better engagement of academics with contemporary issues and effectively enhancing their teaching and assessment practices. It will also report on the program’s collaborative approach to working with Heads of Schools to better support academics, especially early-career ones, by utilizing formal and informal mentoring. Further, the paper will discuss possible factors that may assist the achievement of the intended outcomes of such a model, and will examine its contributions to engendering an outcomes-focussed thinking in engineering education.
Resumo:
In July 2010, China announced the “National Plan for Medium and Long-term Education Reform and Development(2010-2020)” (PRC 2010). The Plan calls for an education system that: • promotes an integrated development which harnesses everyone’s talent; • combines learning and thinking; unifies knowledge and practice; • allows teachers to teach according to individuals’ needs; and • reforms education quality evaluation and personnel evaluation systems focusing on performance including character, knowledge, ability and other factors. This paper discusses the design and implementation of a Professional Learning Program (PLP) undertaken by 432 primary, middle and high school teachers in China. The aim of this initiative was to develop adaptive expertise in using technology that facilitated innovative science and technology teaching and learning as envisaged by the Chinese Ministry of Education’s (2010-2020) education reforms. Key principles derived from literature about professional learning and scaffolding of learning informed the design of the PLP. The analysis of data revealed that the participants had made substantial progress towards the development of adaptive expertise. This was manifested not only by advances in the participants’ repertoires of Subject Matter Knowledge and Pedagogical Content Knowledge but also in changes to their levels of confidence and identities as teachers. It was found that through time the participants had coalesced into a professional learning community that readily engaged in the sharing, peer review, reuse and adaption, and collaborative design of innovative science and technology learning and assessment activities.
Resumo:
The disparity that exists between the highest and lowest achievers together with deficit approaches to teaching, learning and assessment raise serious equity issues related to fairness, validity, culture and access, which were analysed in a recent Australian Research Council funded project. This chapter explores the potential that exists for teachers to work with Indigenous Teacher Assistants (ITAs) to secure cultural connectedness in teaching, learning and assessment of Indigenous students. The study was a design experiment, which was conducted in seven Catholic and Independent primary schools in northern Queensland and involved semi-structured focus group interviews with Year 4 and 6 Indigenous students, principals, teachers and Indigenous Teacher Assistants. Classroom observations and document analyses were also conducted. This corpus of data was analysed using a sociocultural theoretical lens. The use of a sociocultural analysis helped to identify cultural influences, Indigenous students’ funds of knowledge and values. The information from this analysis was made explicit to teachers to demonstrate how they could enhance their pedagogic and assessment practices by embracing and extending the cultural spaces for learning and teaching of Indigenous students. The way in which teachers construct their interactions for greater cultural connectedness and enhanced learning would appear to rely on relationship building with Indigenous staff, Indigenous students’ cultural knowledge, and improved understanding of assessment and related equity issues.