999 resultados para predator recognition
Resumo:
This paper discusses user target intention recognition algorithms for pointing - clicking tasks to reduce users' pointing time and difficulty. Predicting targets by comparing the bearing angles to targets proposed as one of the first algorithms [1] is compared with a Kalman Filter prediction algorithm. Accuracy and sensitivity of prediction are used as performance criteria. The outcomes of a standard point and click experiment are used for performance comparison, collected from both able-bodied and impaired users. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
We present Multi Scale Shape Index (MSSI), a novel feature for 3D object recognition. Inspired by the scale space filtering theory and Shape Index measure proposed by Koenderink & Van Doorn [6], this feature associates different forms of shape, such as umbilics, saddle regions, parabolic regions to a real valued index. This association is useful for representing an object based on its constituent shape forms. We derive closed form scale space equations which computes a characteristic scale at each 3D point in a point cloud without an explicit mesh structure. This characteristic scale is then used to estimate the Shape Index. We quantitatively evaluate the robustness and repeatability of the MSSI feature for varying object scales and changing point cloud density. We also quantify the performance of MSSI for object category recognition on a publicly available dataset. © 2013 Springer-Verlag.
Resumo:
Large margin criteria and discriminative models are two effective improvements for HMM-based speech recognition. This paper proposed a large margin trained log linear model with kernels for CSR. To avoid explicitly computing in the high dimensional feature space and to achieve the nonlinear decision boundaries, a kernel based training and decoding framework is proposed in this work. To make the system robust to noise a kernel adaptation scheme is also presented. Previous work in this area is extended in two directions. First, most kernels for CSR focus on measuring the similarity between two observation sequences. The proposed joint kernels defined a similarity between two observation-label sequence pairs on the sentence level. Second, this paper addresses how to efficiently employ kernels in large margin training and decoding with lattices. To the best of our knowledge, this is the first attempt at using large margin kernel-based log linear models for CSR. The model is evaluated on a noise corrupted continuous digit task: AURORA 2.0. © 2013 IEEE.
Resumo:
Insect PGRPs can function as bacterial recognition molecules triggering proteolytic and/or signal transduction pathways, with the resultant production of antimicrobial peptides. To explore if zebrafish peptidoglycan recognition protein SC (zfPGRP-SC) has such effects, RNA interference (siRNA) and high-density oligonucleotide microarray analysis were used to identify differentially expressed genes regulated by zfPGRP-SC. The mRNA levels for a set of genes involved in Toll-like receptor signaling pathway, such as TLRs, SARM, MyD88, TRAF6 and nuclear factor (NF)-kappa B2 (p100/p52), were examined by quantitative RT-PCR (QT-PCR). The results from the arrays and QT-PCR showed that the expression of 133 genes was involved in signal transduction pathways, which included Toll-like receptor signaling, Wnt signaling, BMP signaling, insulin receptor signaling, TGF-beta signaling, GPCR signaling, small GTPase signaling, second-messenger-mediated signaling, MAPK signaling, JAK/STAT signaling, apoptosis and anti-apoptosis signaling and other signaling cascades. These signaling pathways may connect with each other to form a complex network to regulate not just immune responses but also other processes such as development and apoptosis. When transiently over-expressed in HEK293T cells, zfPGRP-SC inhibited NF-kappa B activity with and without lipopolysacharide (LPS) stimulation. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In Drosophila, Toll signaling cascade, which resembles the mammalian Toll-like receptor (TLR)/IL-1R signaling pathways and regulates the expression of anti-microbial peptide genes, mainly relies on peptidoglycan recognition proteins (PGRPs) for the detection of bacterial pathogens. To explore the effect of zebrafish peptidoglycan recognition protein 6 (zfPGRP6) on Toll-like receptor signaling pathway, RNA interference (siRNA) and real time quantitative PCR (RQ-PCR) methods were used to identify differentially expressed genes regulated by zfPGRP6. The target genes included TLR2, TLR3, TLR5, TLR7, TLR8, IL1R, Sterile-alpha and Armadillo motif containing protein (SARM), myeloid differentiation factor 88 (MyD88) and nuclear factor (NF)-kappa B2 (p100/p52). The results of RQ-PCR showed that RNAi-mediated Suppression of zfPGRP6 significantly down-regulated the expression of TLR2, TLR5, IL1R, SARM, MyD88 and p100/p52. The expression of beta-defensin-1 was also down-regulated in those embryos silenced by zfPGRP6. In challenge experiments to determine the anti-bacterial response to Gram-negative bacteria, RNAi knock-down of zfPGRP6 markedly increased susceptibility to Flavobacterium columnare. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Peptidoglycan recognition protein (PGRP) specifically binds to peptidoglycan and is considered to be one of the pattern recognition proteins in the innate immunity of insect and mammals. Using a database mining approach and RT-PCR, multiple peptidoglycan recognition protein (PGRP) like genes have been discovered in fish including zebrafish Danio rerio, Japanese pufferfish TakiFugu rubripes and spotted green pufferfish Tetraodon nigroviridis. They share the common features of those PGRPs in arthropod and mammals, by containing a conserved PGRP domain. Based on the predicted structures, the identified zebrafish PGRP homologs resemble short and long PGRP members in arthropod and mammals. The identified PGRP genes in T. nigroviridis and TakiFugu rubripes resemble the long PGRPs, and the short PGRP genes have not been found in T. nigroviridis and TakiFugu rubripes databases. Computer modelling of these molecules revealed the presence of three alpha-helices and five or six beta-strands in all fish PGRPs reported in the present study. The long PGRP in teleost fish have multiple alternatively spliced forms, and some of the identified spliced variants, e.g., tnPGRP-L3 and tnPGRP-L4 (in: Tetraodon nigroviridis), exhibited no characters present in the PGRP homologs domain. The coding regions of zfPGRP6 (zf: zebrafish), zfPGRP2-A, zfPGRP2-B and zfPGRP-L contain five exons and four introns; however, the other PGRP-like genes including zfPGRPSC1a, zfPGRPSC2, tnPGRP-L1-, tnPGRP-L2 and frPGRP-L (fr: Takifugu rubripes) contain four exons and three introns. In zebrafish, long and short PGRP genes identified are located in different chromosomes, and an unknown locus containing another long PGRP-like gene has also been found in zebrafish, demonstrating that multiple PGRP loci may be present in fish. In zebrafish, the constitutive expressions of zfPGRP-L, zfPGRP-6 and zfPGRP-SC during ontogeny from unfertilized eggs to larvae, in different organs of adult, and the inductive expression following stimulation by Flavobacterium columnare, were detected by real-time PCR, but the levels and patterns varied for different PGRP genes, implying that different short and long PGRPs may play different roles in innate immune response. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Current methods for formation of detected chess-board vertices into a grid structure tend to be weak in situations with a warped grid, and false and missing vertex-features. In this paper we present a highly robust, yet efficient, scheme suitable for inference of regular 2D square mesh structure from vertices recorded both during projection of a chess-board pattern onto 3D objects, and in the more simple case of camera calibration. Examples of the method's performance in a lung function measuring application, observing chess-boards projected on to patients' chests, are given. The method presented is resilient to significant surface deformation, and tolerates inexact vertex-feature detection. This robustness results from the scheme's novel exploitation of feature orientation information. © 2013 IEEE.
Resumo:
A software has been developed for the peak recognition of 136 polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) after high resolution gas chromatography coupled with mass spectrometry (HRGC/HRMS). Based on the retention times of C-13 labelled 2,3,7,8-substituted PCDD/F internal standards, the retention times of all PCDD and PCDF can be calibrated automatically and accurately. Therefore, it is very convenient to identify the peaks by comparing the retention of samples and the calibrated retention times of their chromatograms. Hence, this approach is very significant because it is impossible to obtain always a standard chromatogram and PCDD/F analysis are very expensive and time consuming. The calibration results can be transferred to Excel for calculation. The approach is a first step to store costly and environmentally relevant data for future application.
Resumo:
The accurate cancer classification is of great importance in clinical treatment. Recently, the DNA microarray technology provides a promising approach to the diagnosis and prognosis of cancer types. However, it has no perfect method for the multiclass classification problem. The difficulty lies in the fact that the data are of high dimensionality with small sample size. This paper proposed an automatic classification method of multiclass cancers based on Biomimetic pattern recognition (BPR). To the public GCM data set, the average correct classification rate reaches 80% under the condition that the correct rejection rate is 81%.
Resumo:
In this paper, a new classifier of speaker identification has been proposed, which is based on Biomimetic pattern recognition (BPR). Distinguished from traditional speaker recognition methods, such as DWT, HMM, GMM, SVM and so on, the proposed classifier is constructed by some finite sub-space which is reasonable covering of the points in high dimensional space according to distributing characteristic of speech feature points. It has been used in the system of speaker identification. Experiment results show that better effect could be obtained especially with lesser samples. Furthermore, the proposed classifier employs a much simpler modeling structure as compared to the GMM. In addition, the basic idea "cognition" of Biomimetic pattern recognition (BPR) results in no requirement of retraining the old system for enrolling new speakers.
Resumo:
Correct classification of different metabolic cycle stages to identification cell cycle is significant in both human development and clinical diagnostics. However, it has no perfect method has been reached in classification of metabolic cycle yet. This paper exploringly puts forward an automatic classification method of metabolic cycle based on Biomimetic pattern recognition (BPR). As to the three phases of yeast metabolic cycle, the correct classification rate reaches 90%, 100% and 100% respectively.
Resumo:
Biomimetic pattern recogntion (BPR), which is based on "cognition" instead of "classification", is much closer to the function of human being. The basis of BPR is the Principle of homology-continuity (PHC), which means the difference between two samples of the same class must be gradually changed. The aim of BPR is to find an optimal covering in the feature space, which emphasizes the "similarity" among homologous group members, rather than "division" in traditional pattern recognition. Some applications of BPR are surveyed, in which the results of BPR are much better than the results of Support Vector Machine. A novel neuron model, Hyper sausage neuron (HSN), is shown as a kind of covering units in BPR. The mathematical description of HSN is given and the 2-dimensional discriminant boundary of HSN is shown. In two special cases, in which samples are distributed in a line segment and a circle, both the HSN networks and RBF networks are used for covering. The results show that HSN networks act better than RBF networks in generalization, especially for small sample set, which are consonant with the results of the applications of BPR. And a brief explanation of the HSN networks' advantages in covering general distributed samples is also given.
Resumo:
On the basis of DBF nets proposed by Wang Shoujue, the model and properties of DBF neural network were discussed in this paper. When applied in pattern recognition, the algorithm and implement on hardware were presented respectively. We did experiments on recognition of omnidirectionally oriented rigid objects on the same level, using direction basis function neural networks, which acts by the method of covering the high dimensional geometrical distribution of the sample set in the feature space. Many animal and vehicle models (even with rather similar shapes) were recognized omnidirectionally thousands of times. For total 8800 tests, the correct recognition rate is 98.75%, the error rate and the rejection rate are 0.5% and 1.25% respectively. (C) 2003 Elsevier Inc. All rights reserved.