930 resultados para planar waveguides
Resumo:
We investigate a recently introduced width measure of planar shapes called sweepwidth and prove a lower bound theorem on the sweepwidth.
Resumo:
Large-scale mechanical products, such as aircraft and rockets, consist of large numbers of small components, which introduce additional difficulty for assembly accuracy and error estimation. Planar surfaces as key product characteristics are usually utilised for positioning small components in the assembly process. This paper focuses on assembly accuracy analysis of small components with planar surfaces in large-scale volume products. To evaluate the accuracy of the assembly system, an error propagation model for measurement error and fixture error is proposed, based on the assumption that all errors are normally distributed. In this model, the general coordinate vector is adopted to represent the position of the components. The error transmission functions are simplified into a linear model, and the coordinates of the reference points are composed by theoretical value and random error. The installation of a Head-Up Display is taken as an example to analyse the assembly error of small components based on the propagation model. The result shows that the final coordination accuracy is mainly determined by measurement error of the planar surface in small components. To reduce the uncertainty of the plane measurement, an evaluation index of measurement strategy is presented. This index reflects the distribution of the sampling point set and can be calculated by an inertia moment matrix. Finally, a practical application is introduced for validating the evaluation index.
Resumo:
We show that optimal partisan districting in the plane with geographical constraints is an NP-complete problem.
Resumo:
Launching centers are designed for scientific and commercial activities with aerospace vehicles. Rockets Tracking Systems (RTS) are part of the infrastructure of these centers and they are responsible for collecting and processing the data trajectory of vehicles. Generally, Parabolic Reflector Radars (PRRs) are used in RTS. However, it is possible to use radars with antenna arrays, or Phased Arrays (PAs), so called Phased Arrays Radars (PARs). Thus, the excitation signal of each radiating element of the array can be adjusted to perform electronic control of the radiation pattern in order to improve functionality and maintenance of the system. Therefore, in the implementation and reuse projects of PARs, modeling is subject to various combinations of excitation signals, producing a complex optimization problem due to the large number of available solutions. In this case, it is possible to use offline optimization methods, such as Genetic Algorithms (GAs), to calculate the problem solutions, which are stored for online applications. Hence, the Genetic Algorithm with Maximum-Minimum Crossover (GAMMC) optimization method was used to develop the GAMMC-P algorithm that optimizes the modeling step of radiation pattern control from planar PAs. Compared with a conventional crossover GA, the GAMMC has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, the GAMMC prevents premature convergence, increases population fitness and reduces the processing time. Therefore, the GAMMC-P uses a reconfigurable algorithm with multiple objectives, different coding and genetic operator MMC. The test results show that GAMMC-P reached the proposed requirements for different operating conditions of a planar RAV.
Resumo:
The authors would like to thank the staff of the James Watt Nanofabrication Centre at the University of Glasgow for help in fabricating the devices which is reported in this paper. ‘Part of this work was supported by ESPRC through EP/H011862/ 1, and EP/H012966/1.
Resumo:
A planar reconfigurable linear (also rectilinear) rigid-body motion linkage (RLRBML) with two operation modes, that is, linear rigid-body motion mode and lockup mode, is presented using only R (revolute) joints. The RLRBML does not require disassembly and external intervention to implement multi-task requirements. It is created via combining a Robert’s linkage and a double parallelogram linkage (with equal lengths of rocker links) arranged in parallel, which can convert a limited circular motion to a linear rigid-body motion without any reference guide way. This linear rigid-body motion is achieved since the double parallelogram linkage can guarantee the translation of the motion stage, and Robert’s linkage ensures the approximate straight line motion of its pivot joint connecting to the double parallelogram linkage. This novel RLRBML is under the linear rigid-body motion mode if the four rocker links in the double parallelogram linkage are not parallel. The motion stage is in the lockup mode if all of the four rocker links in the double parallelogram linkage are kept parallel in a tilted position (but the inner/outer two rocker links are still parallel). In the lockup mode, the motion stage of the RLRBML is prohibited from moving even under power off, but the double parallelogram linkage is still moveable for its own rotation application. It is noted that further RLRBMLs can be obtained from the above RLRBML by replacing Robert’s linkage with any other straight line motion linkage (such as Watt’s linkage). Additionally, a compact RLRBML and two single-mode linear rigid-body motion linkages are presented.
Resumo:
PRBMs (pseudo-rigid-body models) have been becoming important engineering technologies/methods in the field of compliant mechanisms to simplify the design and analysis through the use of the knowledge body of rigid-body mechanisms coupling with springs. This article addresses the PRBMs of spatial multi-beam modules for planar motion, which are composed of three or more symmetrical wire/slender beams parallel to each other where the planar twisting DOF (degree of freedom) is assumed to be very small for specific applications/loading conditions. Simplified PRBMs are firstly proposed through replacing each beam in spatial multi-beam module with a rigid-body link plus two identical spherical joints at its two ends. The characteristics factor, bending stiffness and twisting stiffness for the spherical joint are determined. Load-displacement equations are then derived for a class of spatial multi-beam modules and general spatial multi-beam modules using the virtual work principle and kinematic relationships. Finally, nonlinear FEA (finite element analysis) is employed with comparisons with the PRBMs. The present PRBMs have shown the ability to predict the primary nonlinear constraint characteristics such as load-stiffening effect, cross-axis coupling in the two primary translational directions and buckling load.
Resumo:
This paper reports the results of the on-body experimental tests of a set of four planar differential antennas, originated by design variations of radiating elements with the same shape and characterized by the potential for covering wide and narrow bands. All the antenna designs have been implemented on low-cost FR4 substrate and characterized experimentally through on-body measurements. The results show the impact of the proximity to the human body on antenna performance and the opportunities in terms of potential coverage of wide and narrow bands for future ad hoc designs and implementations through wearable substrates targeting on-body and off-body communication and sensing applications.
Resumo:
The semiconductor nanowire has been widely studied over the past decade and identified as a promising nanotechnology building block with application in photonics and electronics. The flexible bottom-up approach to nanowire growth allows for straightforward fabrication of complex 1D nanostructures with interesting optical, electrical, and mechanical properties. III-V nanowires in particular are useful because of their direct bandgap, high carrier mobility, and ability to form heterojunctions and have been used to make devices such as light-emitting diodes, lasers, and field-effect transistors. However, crystal defects are widely reported for III-V nanowires when grown in the common out-of-plane <111>B direction. Furthermore, commercialization of nanowires has been limited by the difficulty of assembling nanowires with predetermined position and alignment on a wafer-scale. In this thesis, planar III-V nanowires are introduced as a low-defect and integratable nanotechnology building block grown with metalorganic chemical vapor deposition. Planar GaAs nanowires grown with gold seed particles self-align along the <110> direction on the (001) GaAs substrate. Transmission electron microscopy reveals that planar GaAs nanowires are nearly free of crystal defects and grow laterally and epitaxially on the substrate surface. The nanowire morphology is shown to be primarily controlled through growth temperature and an ideal growth window of 470 +\- 10 °C is identified for planar GaAs nanowires. Extension of the planar growth mode to other materials is demonstrated through growth of planar InAs nanowires. Using a sacrificial layer, the transfer of planar GaAs nanowires onto silicon substrates with control over the alignment and position is presented. A metal-semiconductor field-effect transistor fabricated with a planar GaAs nanowire shows bulk-like low-field electron transport characteristics with high mobility. The aligned planar geometry and excellent material quality of planar III-V nanowires may lead to highly integrated III-V nanophotonics and nanoelectronics.
Resumo:
Understanding and measuring the interaction of light with sub-wavelength structures and atomically thin materials is of critical importance for the development of next generation photonic devices. One approach to achieve the desired optical properties in a material is to manipulate its mesoscopic structure or its composition in order to affect the properties of the light-matter interaction. There has been tremendous recent interest in so called two-dimensional materials, consisting of only a single to a few layers of atoms arranged in a planar sheet. These materials have demonstrated great promise as a platform for studying unique phenomena arising from the low-dimensionality of the material and for developing new types of devices based on these effects. A thorough investigation of the optical and electronic properties of these new materials is essential to realizing their potential. In this work we present studies that explore the nonlinear optical properties and carrier dynamics in nanoporous silicon waveguides, two-dimensional graphite (graphene), and atomically thin black phosphorus. We first present an investigation of the nonlinear response of nanoporous silicon optical waveguides using a novel pump-probe method. A two-frequency heterodyne technique is developed in order to measure the pump-induced transient change in phase and intensity in a single measurement. The experimental data reveal a characteristic material response time and temporally resolved intensity and phase behavior matching a physical model dominated by free-carrier effects that are significantly stronger and faster than those observed in traditional silicon-based waveguides. These results shed light on the large optical nonlinearity observed in nanoporous silicon and demonstrate a new measurement technique for heterodyne pump-probe spectroscopy. Next we explore the optical properties of low-doped graphene in the terahertz spectral regime, where both intraband and interband effects play a significant role. Probing the graphene at intermediate photon energies enables the investigation of the nonlinear optical properties in the graphene as its electron system is heated by the intense pump pulse. By simultaneously measuring the reflected and transmitted terahertz light, a precise determination of the pump-induced change in absorption can be made. We observe that as the intensity of the terahertz radiation is increased, the optical properties of the graphene change from interband, semiconductor-like absorption, to a more metallic behavior with increased intraband processes. This transition reveals itself in our measurements as an increase in the terahertz transmission through the graphene at low fluence, followed by a decrease in transmission and the onset of a large, photo-induced reflection as fluence is increased. A hybrid optical-thermodynamic model successfully describes our observations and predicts this transition will persist across mid- and far-infrared frequencies. This study further demonstrates the important role that reflection plays since the absorption saturation intensity (an important figure of merit for graphene-based saturable absorbers) can be underestimated if only the transmitted light is considered. These findings are expected to contribute to the development of new optoelectronic devices designed to operate in the mid- and far-infrared frequency range. Lastly we discuss recent work with black phosphorus, a two-dimensional material that has recently attracted interest due to its high mobility and direct, configurable band gap (300 meV to 2eV), depending on the number of atomic layers comprising the sample. In this work we examine the pump-induced change in optical transmission of mechanically exfoliated black phosphorus flakes using a two-color optical pump-probe measurement. The time-resolved data reveal a fast pump-induced transparency accompanied by a slower absorption that we attribute to Pauli blocking and free-carrier absorption, respectively. Polarization studies show that these effects are also highly anisotropic - underscoring the importance of crystal orientation in the design of optical devices based on this material. We conclude our discussion of black phosphorus with a study that employs this material as the active element in a photoconductive detector capable of gigahertz class detection at room temperature for mid-infrared frequencies.
Resumo:
Many photonic devices are based on waveguides (WG) whose optical properties can be externally modified. These active WGs are usually obtained with electrooptic materials in either the propagating film (core) or the substrate (cladding). In the second case, the WG tunability is based on the interaction of the active material with the evanescent field of the propagating beam.Liquid crystals (LCs) are an excellent choice as electrooptic active materials since they feature high birefringence, low switching voltage, and relatively simple manufacturing. In this work, we have explored alternative ways to prepare WGs of arbitrary shapes avoiding photolithographic steps. To do this, we have employed a UV laser unit (Spectra Physics)attached to an xyzCNC system mounted on an optical bench. The laser power is 300mW, the spot size can be reduced slightly below 1 µm, and the electromechanicalpositioning is well below that number.Different photoresinshave been evaluated for curing time and uniformity; the results have been compared to equivalent WGs realized by standard photolithographic procedures. Best results have been obtained with several kinds of NOA adhesives (Norland Products Inc.) and SU8 (Microchem). NOA81 optical adhesive has been employed by several groups for the preparation ofmicrochannels [1] and microfluidic systems[2]. In our case, several NOAs having different refractive indices have been tested in order to optimize light coupling and guiding. The adhesive is spinnedonto a substrate, and a number of segmented WGs are written with the laser system. The laser power is attenuated 20 dB. Then the laser spot is swept a number of times (from 1 to 900) on every segment. It has been found that, for example, the optimum number of sweeps for NOA81 is 30-70 times (center of the figure) under these conditions. The WG dimensions obtained with this procedure are about 7 µm high and 12 µm wide.
Resumo:
Conventional Si complementary-metal-oxide-semiconductor (CMOS) scaling is fast approaching its limits. The extension of the logic device roadmap for future enhancements in transistor performance requires non-Si materials and new device architectures. III-V materials, due to their superior electron transport properties, are well poised to replace Si as the channel material beyond the 10nm technology node to mitigate the performance loss of Si transistors from further reductions in supply voltage to minimise power dissipation in logic circuits. However several key challenges, including a high quality dielectric/III-V gate stack, a low-resistance source/drain (S/D) technology, heterointegration onto a Si platform and a viable III-V p-metal-oxide-semiconductor field-effect-transistor (MOSFET), need to be addressed before III-Vs can be employed in CMOS. This Thesis specifically addressed the development and demonstration of planar III-V p-MOSFETs, to complement the n-MOSFET, thereby enabling an all III-V CMOS technology to be realised. This work explored the application of InGaAs and InGaSb material systems as the channel, in conjunction with Al2O3/metal gate stacks, for p-MOSFET development based on the buried-channel flatband device architecture. The body of work undertaken comprised material development, process module development and integration into a robust fabrication flow for the demonstration of p-channel devices. The parameter space in the design of the device layer structure, based around the III-V channel/barrier material options of Inx≥0.53Ga1-xAs/In0.52Al0.48As and Inx≥0.1Ga1-xSb/AlSb, was systematically examined to improve hole channel transport. A mobility of 433 cm2/Vs, the highest room temperature hole mobility of any InGaAs quantum-well channel reported to date, was obtained for the In0.85Ga0.15As (2.1% strain) structure. S/D ohmic contacts were developed based on thermally annealed Au/Zn/Au metallisation and validated using transmission line model test structures. The effects of metallisation thickness, diffusion barriers and de-oxidation conditions were examined. Contacts to InGaSb-channel structures were found to be sensitive to de-oxidation conditions. A fabrication process, based on a lithographically-aligned double ohmic patterning approach, was realised for deep submicron gate-to-source/drain gap (Lside) scaling to minimise the access resistance, thereby mitigating the effects of parasitic S/D series resistance on transistor performance. The developed process yielded gaps as small as 20nm. For high-k integration on GaSb, ex-situ ammonium sulphide ((NH4)2S) treatments, in the range 1%-22%, for 10min at 295K were systematically explored for improving the electrical properties of the Al2O3/GaSb interface. Electrical and physical characterisation indicated the 1% treatment to be most effective with interface trap densities in the range of 4 - 10×1012cm-2eV-1 in the lower half of the bandgap. An extended study, comprising additional immersion times at each sulphide concentration, was further undertaken to determine the surface roughness and the etching nature of the treatments on GaSb. A number of p-MOSFETs based on III-V-channels with the most promising hole transport and integration of the developed process modules were successfully demonstrated in this work. Although the non-inverted InGaAs-channel devices showed good current modulation and switch-off characteristics, several aspects of performance were non-ideal; depletion-mode operation, modest drive current (Id,sat=1.14mA/mm), double peaked transconductance (gm=1.06mS/mm), high subthreshold swing (SS=301mV/dec) and high on-resistance (Ron=845kΩ.μm). Despite demonstrating substantial improvement in the on-state metrics of Id,sat (11×), gm (5.5×) and Ron (5.6×), inverted devices did not switch-off. Scaling gate-to-source/drain gap (Lside) from 1μm down to 70nm improved Id,sat (72.4mA/mm) by a factor of 3.6 and gm (25.8mS/mm) by a factor of 4.1 in inverted InGaAs-channel devices. Well-controlled current modulation and good saturation behaviour was observed for InGaSb-channel devices. In the on-state In0.3Ga0.7Sb-channel (Id,sat=49.4mA/mm, gm=12.3mS/mm, Ron=31.7kΩ.μm) and In0.4Ga0.6Sb-channel (Id,sat=38mA/mm, gm=11.9mS/mm, Ron=73.5kΩ.μm) devices outperformed the InGaAs-channel devices. However the devices could not be switched off. These findings indicate that III-V p-MOSFETs based on InGaSb as opposed to InGaAs channels are more suited as the p-channel option for post-Si CMOS.
Resumo:
In this paper we present a fast and precise method to estimate the planar motion of a lidar from consecutive range scans. For every scanned point we formulate the range flow constraint equation in terms of the sensor velocity, and minimize a robust function of the resulting geometric constraints to obtain the motion estimate. Conversely to traditional approaches, this method does not search for correspondences but performs dense scan alignment based on the scan gradients, in the fashion of dense 3D visual odometry. The minimization problem is solved in a coarse-to-fine scheme to cope with large displacements, and a smooth filter based on the covariance of the estimate is employed to handle uncertainty in unconstraint scenarios (e.g. corridors). Simulated and real experiments have been performed to compare our approach with two prominent scan matchers and with wheel odometry. Quantitative and qualitative results demonstrate the superior performance of our approach which, along with its very low computational cost (0.9 milliseconds on a single CPU core), makes it suitable for those robotic applications that require planar odometry. For this purpose, we also provide the code so that the robotics community can benefit from it.