950 resultados para ozone and storage
Resumo:
The development of carbon capture and storage (CCS) has raised interest towards novel fluidised bed (FB) energy applications. In these applications, limestone can be utilized for S02 and/or CO2 capture. The conditions in the new applications differ from the traditional atmospheric and pressurised circulating fluidised bed (CFB) combustion conditions in which the limestone is successfully used for SO2 capture. In this work, a detailed physical single particle model with a description of the mass and energy transfer inside the particle for limestone was developed. The novelty of this model was to take into account the simultaneous reactions, changing conditions, and the effect of advection. Especially, the capability to study the cyclic behaviour of limestone on both sides of the calcination-carbonation equilibrium curve is important in the novel conditions. The significances of including advection or assuming diffusion control were studied in calcination. Especially, the effect of advection in calcination reaction in the novel combustion atmosphere was shown. The model was tested against experimental data; sulphur capture was studied in a laboratory reactor in different fluidised bed conditions. Different Conversion levels and sulphation patterns were examined in different atmospheres for one limestone type. The Conversion curves were well predicted with the model, and the mechanisms leading to the Conversion patterns were explained with the model simulations. In this work, it was also evaluated whether the transient environment has an effect on the limestone behaviour compared to the averaged conditions and in which conditions the effect is the largest. The difference between the averaged and transient conditions was notable only in the conditions which were close to the calcination-carbonation equilibrium curve. The results of this study suggest that the development of a simplified particle model requires a proper understanding of physical and chemical processes taking place in the particle during the reactions. The results of the study will be required when analysing complex limestone reaction phenomena or when developing the description of limestone behaviour in comprehensive 3D process models. In order to transfer the experimental observations to furnace conditions, the relevant mechanisms that take place need to be understood before the important ones can be selected for 3D process model. This study revealed the sulphur capture behaviour under transient oxy-fuel conditions, which is important when the oxy-fuel CFB process and process model are developed.
Resumo:
Workshop at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Tämä diplomityö on läpileikkaus kasvihuonekaasupäästöistä sekä niitä koskevista vähennystoimenpiteistä Suomessa Kioton pöytäkirjan ensimmäisen sopimuskauden lopussa. Työ on toteutettu kirjallisuustutkimuksena ja siihen on käytetty painettuja sekä sähköisiä lähteitä. Huoli ilmastonmuutoksesta on saanut aikaan sen, että kasvihuonekaasupäästöjä rajoitetaan tänä päivänä kansainvälisillä sopimuksilla. Vaikka kaikki suuretkaan päästäjämaat eivät ole sopimuksia ratifioineet, ovat EU-maat Suomi mukaan lukien sitoutuneet YK:n ilmastonmuutosta koskevaan puitesopimukseen ja sen noudattamiseen. Puitesopimusta tarkentavassa Kioton pöytäkirjassa EU sitoutui vähentämään kuuden eri kasvihuonekaasun kokonaispäästöjä yhteensä 8 prosenttia ajanjaksolla 2008–2012 vuoteen 1990 verrattuna. Kasvihuonekaasut, joita rajoitukset koskivat, olivat hiilidioksidi, metaani, dityppioksidi, fluorihiilivedyt, perfluorihiilivedyt ja rikkiheksafluoridi. EU:n sisäisessä taakanjaossa Suomen tavoite oli pitää päästöt vertailuvuoden 1990 tasossa ja Suomi alitti tämän noin viidellä prosentilla. Vuoden 2012 jälkeen Suomen kasvihuonekaasupäästöjen vähennystavoite on kiristynyt. Vuosille 2013–2020 Suomen tavoite on vähentää kasvihuonekaasupäästöjä 20 prosenttia alle perusvuoden 1990 tason. Työssä tutustutaan myös keinoihin, joilla aiempien ja tulevien päästöjenvähennystavoitteiden saavuttaminen on mahdollista. Näitä keinoja on mm. erilaisten biopolttoaineiden sekoittaminen fossiilisten polttoaineiden sekaan, energiatehokkuuden parantaminen ja biokaasun käytön lisääminen. Lisäksi työssä käsitellään eräitä merkityksellisiä käsitteitä, kuten EU:n päästökauppajärjestelmä ja hiilidioksidin talteenotto ja varastointi.
Resumo:
The medial septum participates in the modulation of exploratory behavior triggered by novelty. Also, selective lesions of the cholinergic component of the septohippocampal system alter the habituation of rats to an elevated plus-maze without modifying anxiety indices. We investigated the effects of the intraseptal injection of the cholinergic immunotoxin 192 IgG-saporin (SAP) on the behavior of rats in an open-field. Thirty-nine male Wistar rats (weight: 194-230 g) were divided into three groups, non-injected controls and rats injected with either saline (0.5 µl) or SAP (237.5 ng/0.5 µl). Twelve days after surgery, the animals were placed in a square open-field (120 cm) and allowed to freely explore for 5 min. After the test, the rats were killed by decapitation and the septum, hippocampus and frontal cortex were removed and assayed for acetylcholinesterase activity. SAP increased acetylcholinesterase activity in the septum, hippocampus and frontal cortex and decreased the total distance run (9.15 ± 1.51 m) in comparison to controls (13.49 ± 0.91 m). The time spent in the center and at the periphery was not altered by SAP but the distance run was reduced during the first and second minutes (2.43 ± 0.36 and 1.75 ± 0.34 m) compared to controls (4.18 ± 0.26 and 3.14 ± 0.25 m). SAP-treated rats showed decreased but persistent exploration throughout the session. These results suggest that septohippocampal cholinergic mechanisms contribute to at least two critical processes, one related to the motivation to explore new environments and the other to the acquisition and storage of spatial information (i.e., spatial memory).
Resumo:
Tutkimuksen tarkoituksena oli kartoittaa lämpötilan vaikutusta veden orgaanisten haitta-aineiden hapetuksessa PCD-menetelmällä. Kokeita tehtiin näytteiden eri alkulämpötiloilla. Malliyhdisteenä kokeissa käytettiin oksaalihappoa. Teoriaosuudessa käsiteltiin pulssittaista koronapurkausta ilmiönä. Lisäksi tarkasteltiin, kuinka PCD-menetelmällä muodostuu hapettimia neste-kaasufaasissa. Syntyvistä hapettimista keskityttiin otsoniin ja hydroksyyliradikaaliin. Kokeellisessa osuudessa esiteltiin käytetty PCD-laitteisto. Esittelyn jälkeen siirryttiin hapetuskokeiden kuvaamiseen ja analyysin suorittamiseen titrauksella. Lopuksi koottiin tulokset. Tutkimuksissa prosessin hapetustehon havaittiin heikentyvän lämpötilan noustessa tutkitulla lämpötila-alueella, mikä voi selittyä kaasufaasissa muodostuvan otsonin heikentyvällä liukoisuudella. Tuloksia voidaan pitää viitteellisinä, ja selkeän mallin muodostamiseksi tarvitaan jatkotutkimuksia laajemmalla lämpötila-alueella tarkasti toistettavilla koejärjestelyillä.
Resumo:
Kemira Chemicals Oy:n Joutsenon kloori-alkalitehtaalla valmistetaan elektrolyysin avulla lipeää, suolahappoa, natriumhypokloriittia ja vetyä. Tämän työn tavoitteena on kartoittaa kloori-alkalitehtaan tuotantokapasiteetin kasvatuksen yhteydessä esiin tulevat pullonkaulat, lähitulevaisuuden kunnossapitotarpeet sekä parhaat käytettävissä olevat teknologiavaihtoehdot kloori-alkalitehtaan osa-alueille, joihin tuotantokapasiteetin kasvatuspaineet kohdistuvat: elektrolyysi, lipeän haihdutus ja suolahappopolttimet. Pullonkaulojen kartoittaminen toteutettiin rakentamalla taulukkolaskentamalli kloori-alkalitehtaan prosesseista. Mallin avulla simuloitiin elektrolyysin kloorin tuotantoa, jota kasvatettiin asteittain 54 kt:sta/a aina 100 kt:iin/a asti ja tutkittiin prosessien käyttäytymistä. Tarkastelun pohjalta havaittiin, että kloorin tuotantoa kasvattaessa, tulee lisätä myös tuotantokapasiteettia suolahapon valmistukseen, elektrolyysiin, demineralisoidun veden valmistukseen ja lipeän haihdutuslaitokseen sekä suolahapon ja lipeän varastointikapasiteetteihin. Vaihtoehtoiset teknologiat määritettiin kirjallisuudesta ja laitetoimittajien esitteistä. Lähivuosien kunnossapitotarpeet kartoitettiin haastattelemalla tehtaan henkilökuntaa. Työstä eskaloitui useita jatkotutkimuskohteita, joita ovat bipolaari-teknologian soveltuvuus Joutsenon kloori-alkalitehtaalle, uusien HCl-polttimien esisuunnittelu, höyryn käytön tehostaminen nykyisessä lipeän haihdutuslaitoksessa sekä uusien haihdutusteknologioiden soveltuvuus Joutsenon kloori-alkalitehtaalle, höyry- ja jäähdytysverkostojen kartoitukset sekä demineralisoidun veden valmistuskapasiteetin kasvattaminen.
Resumo:
Poly-L-lactide (PLLA) is a widely used sustainable and biodegradable alternative to replace synthetic non-degradable plastic materials in the packaging industry. Conversely, its processing properties are not always optimal, e.g. insufficient melt strength at higher temperatures (necessary in extrusion coating processes). This thesis reports on research to improve properties of commercial PLLA grade (3051D from NatureWorks), to satisfy and extend end-use applications, such as food packaging by blending with modified PLLA. Adjustment of the processability by chain branching of commercial poly-L-lactide initiated by peroxide was evaluated. Several well-defined branched structures with four arms (sPLLA) were synthesized using pentaerythritol as a tetra-functional initiator. Finally, several block copolymers consisting of polyethylene glycol and PLLA (i.e. PEGLA) were produced to obtain a well extruded material with improved heat sealing properties. Reactive extrusion of poly-L-lactide was carried out in the presence of 0.1, 0.3 and 0.5 wt% of various peroxides [tert-butyl-peroxybenzoate (TBPB), 2,5-dimethyl-2,5-(tert-butylperoxy)-hexane (Lupersol 101; LOL1) and benzoyl peroxide (BPO)] at 190C. The peroxide-treated PLLAs showed increased complex viscosity and storage modulus at lower frequencies, indicating the formation of branched/cross linked architectures. The material property changes were dependent on the peroxide, and the used peroxide concentration. Gel fraction analysis showed that the peroxides, afforded different gel contents, and especially 0.5 wt% peroxide, produced both an extremely high molar mass, and a cross linked structure, not perhaps well suited for e.g. further use in a blending step. The thermal behavior was somewhat unexpected as the materials prepared with 0.5 wt% peroxide showed the highest ability for crystallization and cold crystallization, despite substantial cross linking. The peroxide-modified PLLA, i.e. PLLA melt extruded with 0.3 wt% of TBPB and LOL1 and 0.5 wt% BPO was added to linear PLLA in ratios of 5, 15 and 30 wt%. All blends showed increased zero shear viscosity, elastic nature (storage modulus) and shear sensitivity. All blends remained amorphous, though the ability of annealing was improved slightly. Extrusion coating on paperboard was conducted with PLLA, and peroxide-modified PLLA blends (90:10). All blends were processable, but only PLLA with 0.3 wt% of LOL1 afforded a smooth high quality surface with improved line speed. Adhesion levels between fiber and plastic, as well as heat seal performance were marginally reduced compared with pure 3051D. The water vapor transmission measurements (WVTR) of the blends containing LOL1 showed acceptable levels, only slightly lower than for comparable PLLA 3051D. A series of four-arm star-shaped poly-L-lactide (sPLLA) with different branch length was synthesized by ring opening polymerization (ROP) of L-lactide using pentaerythritol as initiator and stannous octoate as catalyst. The star-shaped polymers were further blended with its linear resin and studied for their melt flow and thermal properties. Blends containing 30 wt% of sPLLA with low molecular weight (30 wt%; Mwtotal: 2500 g mol-1 and 15000 g mol-1) showed lower zero shear viscosity and significantly increased shear thinning, while at the same time slightly increased crystallization of the blend. However, the amount of crystallization increased significantly with the higher molecular weight sPLLA, therefore the star-shaped structure may play a role as nucleating agent. PLLA-polyethylene glycol–PLLA triblock copolymers (PEGLA) with different PLLA block length were synthesized and their applicability as blends with linear PLLA (3051D NatureWorks) was investigated with the intention of improving heat-seal and adhesion properties of extrusion-coated paperboard. PLLA-PEG-PLLA was obtained by ring opening polymerization (ROP) of L-lactide using PEG (molecular weight 6000 g mol-1) as an initiator, and stannous octoate as catalyst. The structures of the PEGLAs were characterized by proton nuclear magnetic resonance spectroscopy (1H-NMR). The melt flow and thermal properties of all PEGLAs and their blends were evaluated using dynamic rheology, and differential scanning calorimeter (DSC). All blends containing 30 wt% of PEGLAs showed slightly higher zero shear viscosity, higher shear thinning and increased melt elasticity (based on tan delta). Nevertheless, no significant changes in thermal properties were distinguished. High molecular weight PEGLAs were used in extrusion coating line with 3051D without problems.
Resumo:
Tomatoes are highly susceptible to fungi contamination in the field, during transportation, processing, and storage. Aspergillus flavus and Aspergillus parasiticus have been isolated from tomatoes and tomato products, and both fungi species can produce aflatoxin, mycotoxin with hepatotoxic, carcinogenic, teratogenic, and mutagenic effects on all animal species tested so far. In order to verify a possible aflatoxin contamination of tomato products commercialized in Brazil, 63 samples of tomato products (pulp, paste, purée, ketchup, dehydrated tomatoes, and dried tomatoes preserved in oil) produced in 5 Brazilian states and 1 imported sample (ketchup), totalizing 29 brands, were analyzed by thin layer chromatography. The analytical method showed an average recovery of 86% for all aflatoxins at two spiking levels. The limits of detection for the aflatoxins B1, B2, G1, and G2 varied with the type of the product ranging from 2 to 7 µg/kg. Aflatoxins were not detected in any evaluated sample indicating that they did not pose a risk to human health since there was no invasion of raw materials by toxigenic fungi or no conditions for toxin production.
Resumo:
The objective of this study was to perform an analysis of the characterization of buriti fruit (Mauritia flexuosa). Each part of the fruit (peel, pulp, and fibrous part) was analyzed and their hygroscopic behavior was evaluated to establish the drying and storage conditions. Adsorption and desorption isotherms were obtained at 25 °C to the monolayer value was estimated, and the application of the Halsey, Handerson, Kuhn, Mizrahi, Oswin, Smith, BET, and GAB models was evaluated to the prediction of the isotherms. The fruit pulp was classified as rich in high quality oil, and like the peel and the fibrous part, it was also considered as rich in dietary fiber. The isotherms of the fruit parts were classified as type II, and their microbiological stability (a w < 0.6) can be maintained at 25 °C if the moisture content is lower than 8.5, 7.3, and 11.0 g H2O.100 g-1 of dry matter (d.m.), respectively. The hygroscopic behavior showed that in order to ensure stability, the fruit parts should be packaged with low water vapor permeability. The monolayer demonstrated that the peel, pulp, and the fibrous part cannot be dried under moisture content lower than 5.9, 5.0, and 6.4 g H2O.100 g-1 d.m., respectively. GAB was the most adequate model to describe their isotherms.
Resumo:
The objectives of this study were to understand how genotype, storage time, and storage conditions affect cooking time of beans and to indicate storage techniques that do not affect the cooking time. The grains were subjected to five different storage periods and six different storage conditions. The cooking time was estimated using the Mattson Cooker. The data were subjected to analysis of variance and a subsequent adjustment of simple linear regression for deployment of the interactions between the factors. Contrasts were used to determine the best levels of the factor storage condition. Genotype did not impact cooking time when the storage time and storage conditions were considered. Time and storage conditions affect the cooking time of beans in a dependent manner, but time of storage had the biggest influence. The best conditions for long-term storage of beans ensuring a smaller increase in cooking time is plastic storage at low temperatures. Thus, plastic freezer storage is a practical alternative for consumers.
Resumo:
The Jackfruit tree is one of the most significant trees in tropical home gardens and perhaps the most widespread and useful tree in the important genus Artocarpus. The fruit is susceptible to mechanical and biological damage in the mature state, and some people find the aroma of the fruit objectionable, particularly in confined spaces. The dehydration process could be an alternative for the exploitation of this product, and the relationship between moisture content and water activity provides useful information for its processing and storage. The aim of this study was to determine the thermodynamic properties of the water sorption of jackfruit (Artocarpus heterophyllus Lam.) as a function of moisture content. Desorption isotherms of the different parts of the jackfruit (pulp, peduncle, mesocarp, peel, and seed) were determined at four different temperatures (313.15, 323.15, 333.15, and 343.15 K) in a water activity range of 0.02-0.753 using the static gravimetric method. Theoretical and empirical models were used to model the desorption isotherms. An analytical solution of the Clausius-Clapeyron equation was proposed to calculate the isosteric heat of sorption, the differential entropy, and Gibbs' free energy using the Guggenhein-Anderson-de Boer and Oswin models considering the effect of temperature on the hygroscopic equilibrium.
Resumo:
Orange seeds are a promising agroindustry-waste which can be implemented in the extraction and production of vegetable oil. The relationship between moisture content and water activity provides useful information for the processing and storage of this waste item. The aim of this study was to determine the mechanism of water sorption enthalpy-entropy of orange seeds (C. sinensis cv. Brazilians) according to the moisture content. Therefore, desorption isotherms were determined at five different temperature (30, 40, 50, 60, and 70 ºC) under a wide range of moisture content (0.005-0.057 kg kg-1 d.b.) and water activity (0.02-0.756). Theoretical and empirical models were used for modeling the desorption isotherms. An analytical solution of the Clausius-Clapeyron equation was proposed to compute the isosteric heat of sorption, the differential entropy, and Gibbs free energy using the Oswin model when the effect of temperature on the hygroscopic equilibrium was considered.
Resumo:
Global warming is one of the most alarming problems of this century. Initial scepticism concerning its validity is currently dwarfed by the intensification of extreme weather events whilst the gradual arising level of anthropogenic CO2 is pointed out as its main driver. Most of the greenhouse gas (GHG) emissions come from large point sources (heat and power production and industrial processes) and the continued use of fossil fuels requires quick and effective measures to meet the world’s energy demand whilst (at least) stabilizing CO2 atmospheric levels. The framework known as Carbon Capture and Storage (CCS) – or Carbon Capture Utilization and Storage (CCUS) – comprises a portfolio of technologies applicable to large‐scale GHG sources for preventing CO2 from entering the atmosphere. Amongst them, CO2 capture and mineralisation (CCM) presents the highest potential for CO2 sequestration as the predicted carbon storage capacity (as mineral carbonates) far exceeds the estimated levels of the worldwide identified fossil fuel reserves. The work presented in this thesis aims at taking a step forward to the deployment of an energy/cost effective process for simultaneous capture and storage of CO2 in the form of thermodynamically stable and environmentally friendly solid carbonates. R&D work on the process considered here began in 2007 at Åbo Akademi University in Finland. It involves the processing of magnesium silicate minerals with recyclable ammonium salts for extraction of magnesium at ambient pressure and 400‐440⁰C, followed by aqueous precipitation of magnesium in the form of hydroxide, Mg(OH)2, and finally Mg(OH)2 carbonation in a pressurised fluidized bed reactor at ~510⁰C and ~20 bar PCO2 to produce high purity MgCO3. Rock material taken from the Hitura nickel mine, Finland, and serpentinite collected from Bragança, Portugal, were tested for magnesium extraction with both ammonium sulphate and bisulphate (AS and ABS) for determination of optimal operation parameters, primarily: reaction time, reactor type and presence of moisture. Typical efficiencies range from 50 to 80% of magnesium extraction at 350‐450⁰C. In general ABS performs better than AS showing comparable efficiencies at lower temperature and reaction times. The best experimental results so far obtained include 80% magnesium extraction with ABS at 450⁰C in a laboratory scale rotary kiln and 70% Mg(OH)2 carbonation in the PFB at 500⁰C, 20 bar CO2 pressure for 15 minutes. The extraction reaction with ammonium salts is not at all selective towards magnesium. Other elements like iron, nickel, chromium, copper, etc., are also co‐extracted. Their separation, recovery and valorisation are addressed as well and found to be of great importance. The assessment of the exergetic performance of the process was carried out using Aspen Plus® software and pinch analysis technology. The choice of fluxing agent and its recovery method have a decisive sway in the performance of the process: AS is recovered by crystallisation and in general the whole process requires more exergy (2.48–5.09 GJ/tCO2sequestered) than ABS (2.48–4.47 GJ/tCO2sequestered) when ABS is recovered by thermal decomposition. However, the corrosive nature of molten ABS and operational problems inherent to thermal regeneration of ABS prohibit this route. Regeneration of ABS through addition of H2SO4 to AS (followed by crystallisation) results in an overall negative exergy balance (mainly at the expense of low grade heat) but will flood the system with sulphates. Although the ÅA route is still energy intensive, its performance is comparable to conventional CO2 capture methods using alkanolamine solvents. An energy‐neutral process is dependent on the availability and quality of nearby waste heat and economic viability might be achieved with: magnesium extraction and carbonation levels ≥ 90%, the processing of CO2‐containing flue gases (eliminating the expensive capture step) and production of marketable products.
Resumo:
Fluctuating commodity prices, foreign exchange rates and interest rates are causing changes in cash flows, market value and the companies’ profit. Most of the commodities are quoted in US dollar. Companies with non-dollar accounting face a double risk in the form of the commodity price risk and foreign exchange risk. The objective of this Master’s thesis is to find out how companies under commodity should manage foreign exchange exposure. The theoretical literature is based on foreign exchange risk, commodity risk and foreign exchange exposure management. The empirical research is done by using constructive modelling of a case company in the oil industry. The exposure is model with foreign exchange net cash flow and net working capital. First, the factors affecting foreign exchange exposure in case company are analyzed, then a model of foreign exchange exposure is created. Finally, the models are compared and the most suitable method is defined. According to the literature, foreign exchange exposure is the foreign exchange net cash flow. However, the results of the study show that foreign exchange risk can be managed also with net working capital. When the purchases, sales and storage are under foreign exchange risk, the best way to manage foreign exchange exposure is with combined net cash flow and net working capital method. The foreign exchange risk policy of the company defines the appropriate way to manage foreign exchange risk.
Resumo:
Torrefaction is moderate thermal treatment (~200-300 °C) of biomass in an inert atmosphere. The torrefied fuel offers advantages to traditional biomass, such as higher heating value, reduced hydrophilic nature, increased its resistance to biological decay, and improved grindability. These factors could, for instance, lead to better handling and storage of biomass and increased use of biomass in pulverized combustors. In this work, we look at several aspects of changes in the biomass during torrefaction. We investigate the fate of carboxylic groups during torrefaction and its dependency to equilibrium moisture content. The changes in the wood components including carbohydrates, lignin, extractable materials and ashforming matters are also studied. And at last, the effect of K on torrefaction is investigated and then modeled. In biomass, carboxylic sites are partially responsible for its hydrophilic characteristic. These sites are degraded to varying extents during torrefaction. In this work, methylene blue sorption and potentiometric titration were applied to measure the concentration of carboxylic groups in torrefied spruce wood. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic group contents. Thus, both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction. This provides new information to the chemical changes occurring during torrefaction. The effect of torrefaction temperature on the chemistry of birch wood was investigated. The samples were from a pilot plant at Energy research Center of the Netherlands (ECN). And in that way they were representative of industrially produced samples. Sugar analysis was applied to analyze the hemicellulose and cellulose content during torrefaction. The results show a significant degradation of hemicellulose already at 240 °C, while cellulose degradation becomes significant above 270 °C torrefaction. Several methods including Klason lignin method, solid state NMR and Py-GC-MS analyses were applied to measure the changes in lignin during torrefaction. The changes in the ratio of phenyl, guaiacyl and syringyl units show that lignin degrades already at 240 °C to a small extent. To investigate the changes in the extractives from acetone extraction during torrefaction, gravimetric method, HP-SEC and GC-FID followed by GC-MS analysis were performed. The content of acetone-extractable material increases already at 240 °C torrefaction through the degradation of carbohydrate and lignin. The molecular weight of the acetone-extractable material decreases with increasing the torrefaction temperature. The formation of some valuable materials like syringaresinol or vanillin is also observed which is important from biorefinery perspective. To investigate the change in the chemical association of ash-forming elements in birch wood during torrefaction, chemical fractionation was performed on the original and torrefied birch samples. These results give a first understanding of the changes in the association of ashforming elements during torrefaction. The most significant changes can be seen in the distribution of calcium, magnesium and manganese, with some change in water solubility seen in potassium. These changes may in part be due to the destruction of carboxylic groups. In addition to some changes in water and acid solubility of phosphorous, a clear decrease in the concentration of both chlorine and sulfur was observed. This would be a significant additional benefit for the combustion of torrefied biomass. Another objective of this work is studying the impact of organically bound K, Na, Ca and Mn on mass loss of biomass during torrefaction. These elements were of interest because they have been shown to be catalytically active in solid fuels during pyrolysis and/or gasification. The biomasses were first acid washed to remove the ash-forming matters and then organic sites were doped with K, Na, Ca or Mn. The results show that K and Na bound to organic sites can significantly increase the mass loss during torrefaction. It is also seen that Mn bound to organic sites increases the mass loss and Ca addition does not influence the mass loss rate on torrefaction. This increase in mass loss during torrefaction with alkali addition is unlike what has been found in the case of pyrolysis where alkali addition resulted in a reduced mass loss. These results are important for the future operation of torrefaction plants, which will likely be designed to handle various biomasses with significantly different contents of K. The results imply that shorter retention times are possible for high K-containing biomasses. The mass loss of spruce wood with different content of K was modeled using a two-step reaction model based on four kinetic rate constants. The results show that it is possible to model the mass loss of spruce wood doped with different levels of K using the same activation energies but different pre-exponential factors for the rate constants. Three of the pre-exponential factors increased linearly with increasing K content, while one of the preexponential factors decreased with increasing K content. Therefore, a new torrefaction model was formulated using the hemicellulose and cellulose content and K content. The new torrefaction model was validated against the mass loss during the torrefaction of aspen, miscanthus, straw and bark. There is good agreement between the model and the experimental data for the other biomasses, except bark. For bark, the mass loss of acetone extractable material is also needed to be taken into account. The new model can describe the kinetics of mass loss during torrefaction of different types of biomass. This is important for considering fuel flexibility in torrefaction plants.