957 resultados para novel algorithm
Resumo:
Learning novel actions and skills is a prevalent ability across multiple species and a critical feature for survival and competence in a constantly changing world. Novel actions are generated and learned through a process of trial and error, where an animal explores the environment around itself, generates multiple patterns of behavior and selects the ones that increase the likelihood of positive outcomes. Proper adaptation and execution of the selected behavior requires the coordination of several biomechanical features by the animal. Cortico-basal ganglia circuits and loops are critically involved in the acquisition, learning and consolidation of motor skills.(...)
Resumo:
The main objective of this thesis was the development of polymeric structures from the dissolution of FucoPol, a bacterial exopolysaccharide (EPS), in a biocompatible ionic liquid, choline acetate. The FucoPol was produced by the bacteria Enterobacter A47 using glycerol as carbon source at controlled temperature and pH (30ºC and 7, respectively). At the end of 3 days it was produced 7 g/L of FucoPol. The net yield of Fucopol in glycerol (YP/S) was 0.22 g/g and the maximum productivity 2.37 g/L.d This polymer was characterized about its composition in sugars and acyl groups (by High-Performance Liquid Chromatography - HPLC), containing fucose (35 % mol), galactose (21 % mol), glucose (29 % mol), rhamnose (3% mol) and glucuronic acid (12% mol) as well as acetate (14.28 % mol), pyruvate (2.15 % mol) and succinate (1.80 % mol). Its content of water and ash was 15% p/p and 2% p/p, respectively, and the chemical bonds (determined by Infrared Spectroscopy - FT-IR) are consistent to the literature reports. However, due to limitations in Differential Scanning Calorimetry (DSC) equipment it was not possible to determine the glass transition temperature. In turn, the ionic liquid showed the typical behavior of a Newtonian fluid, glass transition temperature (determined by DSC) -98.03ºC and density 1.1031 g/cm3. The study of chemical bonds by FT-IR showed that amount of water (8.80%) influenced the visualization of the bands predicted to in view of their chemical structure. After the dissolution of the FucoPol in the ionic liquid at different temperatures (50, 60, 80 and 100 ° C) it was promoted the removal of this by the phase inversion method using deionized water as a solvent, followed by drying in an oven at 70 ° C. The mixtures before and after the phase inversion method were characterized through the studies mentioned above. In order to explore possible application field’s biocompatibility assays and collage on balsa wood tests were performed. It was found that the process of washing with water by the phase inversion method was not totally effective in removing the biocompatible ionic liquid, since all FucoPol – IL mixtures still contained ionic liquid in their composition as can be seen by the DSC results and FT-IR. In addition, washing the mixtures with water significantly altered the composition of FucoPol. However, these mixtures, that developed a viscous behavior typical of a non-Newtonian fluid (shear-thinning), have the potential to be applied in the biomedical field as well as biological glues.
Resumo:
The aim of this work project is to analyze the current algorithm used by EDP to estimate their clients’ electrical energy consumptions, create a new algorithm and compare the advantages and disadvantages of both. This new algorithm is different from the current one as it incorporates some effects from temperature variations. The results of the comparison show that this new algorithm with temperature variables performed better than the same algorithm without temperature variables, although there is still potential for further improvements of the current algorithm, if the prediction model is estimated using a sample of daily data, which is the case of the current EDP algorithm.
Resumo:
Acrylic bone cement (BC) is widely used as an anchor of artificial joints. Bacterial infection due to biofilm formation and inflammation are common and difficult to treat problems associated with commercial available BC formulations. Research on novel BC compositions is urgently needed. The main objective of this thesis was to develop a new biocompatible antibiotic-loaded BC with improved release profile. To achieve that aim several additives were incorporated, as an antibiotic (levofloxacin) to combat bacterial growth, an anti-inflammatory drug (diclofenac) to decrease the inflammatory process and two well-known and broadly used biopolymers, alginate and chitosan in order to increase matrix porosity, and in this way to intensify the amount of released drug. Novel BC formulations were tested in order to find the most suitable one that had potential to proceed to clinical application. Numerous tests were conducted as: a) evaluation of drug release profiles in different biomimetic media, b) mechanical and surface studies, c) microbiological activity testing against Staphylococcus aureus and d) in vitro biocompatibility assays (fibroblasts and osteoblasts). In general, the addition of biopolymers increased drug release, didn’t compromised BC mechanical properties and increased BC hydrophilicity. Microbiological testing revealed that Lev[BC]Chi was the only matrix that reduced significantly biofilm formation. On the contrary, alginate and diclofenac loading into BC seemed to increase biofilm growth. Biocompatibility studies showed some decrease in cell viability, in particularly on osteoblasts, mainly due to the high amounts of released drugs. In conclusion, the present work has shown that the matrix with more potential to proceed in further investigations was Lev[BC]Chi. Other conditions (namely additives and drugs concentrations) should be evaluated with the other tested BC matrices before being discharged.
Resumo:
Contém resumo
Resumo:
Mutable state can be useful in certain algorithms, to structure programs, or for efficiency purposes. However, when shared mutable state is used in non-local or nonobvious ways, the interactions that can occur via aliases to that shared memory can be a source of program errors. Undisciplined uses of shared state may unsafely interfere with local reasoning as other aliases may interleave their changes to the shared state in unexpected ways. We propose a novel technique, rely-guarantee protocols, that structures the interactions between aliases and ensures that only safe interference is possible. We present a linear type system outfitted with our novel sharing mechanism that enables controlled interference over shared mutable resources. Each alias is assigned separate, local roles encoded in a protocol abstraction that constrains how an alias can legally use that shared state. By following the spirit of rely-guarantee reasoning, our rely-guarantee protocols ensure that only safe interference can occur but still allow many interesting uses of shared state, such as going beyond invariant and monotonic usages. This thesis describes the three core mechanisms that enable our type-based technique to work: 1) we show how a protocol models an alias’s perspective on how the shared state evolves and constrains that alias’s interactions with the shared state; 2) we show how protocols can be used while enforcing the agreed interference contract; and finally, 3) we show how to check that all local protocols to some shared state can be safely composed to ensure globally safe interference over that shared memory. The interference caused by shared state is rooted at how the uses of di↵erent aliases to that state may be interleaved (perhaps even in non-deterministic ways) at run-time. Therefore, our technique is mostly agnostic as to whether this interference was the result of alias interleaving caused by sequential or concurrent semantics. We show implementations of our technique in both settings, and highlight their di↵erences. Because sharing is “first-class” (and not tied to a module), we show a polymorphic procedure that enables abstract compositions of protocols. Thus, protocols can be specialized or extended without requiring specific knowledge of the interference produce by other protocols to that state. We show that protocol composition can ensure safety even when considering abstracted protocols. We show that this core composition mechanism is sound, decidable (without the need for manual intervention), and provide an algorithm implementation.
Resumo:
Widely used in cancer treatment, chemotherapy still faces hindering challenges, ranging from severe induced toxicity to drug resistance acquisition. As means to overcome these setbacks, newly synthetized compounds have recently come into play with the basis of improved pharmacokinetic/pharmacodynamic properties. With this mind-set, this project aimed towards the antiproliferative potential characterization of a group of metallic compounds. Additionally the incorporation of the compounds within a nanoformulation and within new combination strategies with commercial chemotherapeutic drugs was also envisaged. Cell viability assays presented copper (II) compound (K4) as the most promising, presenting an IC50 of 6.10 μM and 19.09 μM for HCT116 and A549 cell line respectively. Exposure in fibroblasts revealed a 9.18 μM IC50. Hoechst staining assays further revealed the compound’s predisposition to induce chromatin condensation and nuclear fragmentation in HCT116 upon exposure to K4 which was later demonstrated by flow cytometry and annexin V-FITC/propidium iodide double staining analysis (under 50 % cell death induction). The compound further revealed the ability to interact with major macromolecules such as DNA (Kb = 2.17x105 M-1), inducing structural brakes and retardation, and further affecting cell cycle progression revealing delay in S-phase. Moreover BSA interactions were also visible however not conclusive. Proteome profiling revealed overexpression of proteins involved in metabolic activity and underexpression of proteins involved in apoptosis thus corroborating Hoechst and apoptosis flow cytometry data. K4 nanoformulation suffered from several hindrances and was ill succeeded in part due to K4’s poor solubility in aqueous buffers. Other approaches were considered in this regard. Combined chemotherapy assays revealed high cytotoxicity for afatinib and lapatinib strategies. Lapatinib and K4 proteome profiling further revealed high apoptosis rates, high metabolic activity and activation of redundant proteins as part of compensatory mechanisms.
Resumo:
Ship tracking systems allow Maritime Organizations that are concerned with the Safety at Sea to obtain information on the current location and route of merchant vessels. Thanks to Space technology in recent years the geographical coverage of the ship tracking platforms has increased significantly, from radar based near-shore traffic monitoring towards a worldwide picture of the maritime traffic situation. The long-range tracking systems currently in operations allow the storage of ship position data over many years: a valuable source of knowledge about the shipping routes between different ocean regions. The outcome of this Master project is a software prototype for the estimation of the most operated shipping route between any two geographical locations. The analysis is based on the historical ship positions acquired with long-range tracking systems. The proposed approach makes use of a Genetic Algorithm applied on a training set of relevant ship positions extracted from the long-term storage tracking database of the European Maritime Safety Agency (EMSA). The analysis of some representative shipping routes is presented and the quality of the results and their operational applications are assessed by a Maritime Safety expert.
Resumo:
Courtship is a behavior that allows the display of fitness of one sex to the other and gates possible subsequent mating. This behavior is crucial for reproduction and has strong innate components in all animals. Courtship in Drosophila melanogaster consists of a series of highly stereotyped actions that the male performs towards the female. He sings with vibrations of the wings, touches and licks her abdomen, while she evaluates the information presented to her.(...)
Resumo:
The development of organic materials displaying high two-photon absorption (TPA) has attracted much attention in recent years due to a variety of potential applications in photonics and optoelectronics, such as three-dimensional optical data storage, fluorescence imaging, two-photon microscopy, optical limiting, microfabrication, photodynamic therapy, upconverted lasing, etc. The most frequently employed structural motifs for TPA materials are donor–pi bridge–acceptor (D–pi–A) dipoles, donor–pi bridge–donor (D–pi–D) and acceptor–pi bridge-acceptor (A–pi–A) quadrupoles, octupoles, etc. In this work we present the synthesis and photophysical characterization of quadrupolar heterocyclic systems with potential applications in materials and biological sciences as TPA chromophores. Indole is a versatile building block for the synthesis of heterocyclic systems for several optoelectronic applications (chemosensors, nonlinear optical, OLEDs) due to its photophysical properties and donor electron ability and 4H-pyran-4-ylidene fragment is frequently used for the synthesis of red light-emitting materials. On the other hand, 2-(2,6-dimethyl-4H-pyran-4-ylidene)malononitrile (1) and 1,3-diethyl-dihydro-5-(2,6-dimethyl-4H-pyran-4-ylidene)-2-thiobarbituric (2) units are usually used as strong acceptor moieties for the preparation of π-conjugated systems of the push-pull type. These building blocks were prepared by Knoevenagel condensation of the corresponding ketone precursor with malononitrile or 1,3-diethyl-dihydro-2-thiobarbituric acid. The new quadrupolar 4H-pyran-4-ylidene fluorophores (3) derived from indole were prepared through condensation of 5-methyl-1H-indole-3-carbaldehyde with the acceptor precursors 1 and 2, in the presence of a catalytical amount of piperidine. The new compounds were characterized by the usual spectroscopic techniques (UV-vis., FT-IR and multinuclear NMR - 1H, 13C).
Resumo:
This paper presents a novel architecture of a bidirectional bridgeless interleaved converter for battery chargers of electric vehicles (EVs). The proposed converter is composed by two power stages: an ac-dc converter that is used to interface the power grid and the dc-link, and a dc-dc converter that is used to interface the dc-link and the batteries. The ac-dc converter is an interleaved bridgeless bidirectional boost-type converter and the dc-dc converter is a bidirectional buck-boost-type converter. The proposed converter works with sinusoidal grid current and with high power factor for all operating power levels, and in both grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operation modes. In the paper is described in detail the proposed converter for EV battery chargers: the circuit topology, the principle of operation, the power control theory, and the current control strategy. Several simulation results for both G2V and V2G operation modes are presented.
Resumo:
This paper presents a novel concept of unidirectional bridgeless combined boost-buck converter for electric vehicles (EVs) battery chargers. The proposed converter is composed by two power stages: an ac-dc front-end converter used to interface the power grid and the dc-link, and a dc-dc back-end converter used to interface the dc-link and the batteries. The ac-dc converter is a bridgeless boost-type converter and the dc-dc converter is an interleaved buck-type converter. The proposed converter operates with sinusoidal grid current and unitary power factor for all operating power levels. Along the paper is described in detail the proposed converter for EV battery chargers: the circuit topology, the different stages describing the principle of operation, the power control theory, and the current control strategy, for both converters. Along the paper are presented several simulation results for a maximum power of 3.5 kW.
Resumo:
The present paper reports the precipitation process of Al3Sc structures in an aluminum scandium alloy, which has been simulated with a synchronous parallel kinetic Monte Carlo (spkMC) algorithm. The spkMC implementation is based on the vacancy diffusion mechanism. To filter the raw data generated by the spkMC simulations, the density-based clustering with noise (DBSCAN) method has been employed. spkMC and DBSCAN algorithms were implemented in the C language and using MPI library. The simulations were conducted in the SeARCH cluster located at the University of Minho. The Al3Sc precipitation was successfully simulated at the atomistic scale with the spkMC. DBSCAN proved to be a valuable aid to identify the precipitates by performing a cluster analysis of the simulation results. The achieved simulations results are in good agreement with those reported in the literature under sequential kinetic Monte Carlo simulations (kMC). The parallel implementation of kMC has provided a 4x speedup over the sequential version.
Resumo:
Earthworks involve the levelling or shaping of a target area through the moving or processing of the ground surface. Most construction projects require earthworks, which are heavily dependent on mechanical equipment (e.g., excavators, trucks and compactors). Often, earthworks are the most costly and time-consuming component of infrastructure constructions (e.g., road, railway and airports) and current pressure for higher productivity and safety highlights the need to optimize earthworks, which is a nontrivial task. Most previous attempts at tackling this problem focus on single-objective optimization of partial processes or aspects of earthworks, overlooking the advantages of a multi-objective and global optimization. This work describes a novel optimization system based on an evolutionary multi-objective approach, capable of globally optimizing several objectives simultaneously and dynamically. The proposed system views an earthwork construction as a production line, where the goal is to optimize resources under two crucial criteria (costs and duration) and focus the evolutionary search (non-dominated sorting genetic algorithm-II) on compaction allocation, using linear programming to distribute the remaining equipment (e.g., excavators). Several experiments were held using real-world data from a Portuguese construction site, showing that the proposed system is quite competitive when compared with current manual earthwork equipment allocation.
Resumo:
The pavement recycling allows to reuse reclaimed asphalt pavement (RAP) or other waste materials in new asphalt mixtures for road construction or rehabilitation, thus re-ducing the use of virgin materials (aggregates and bitumen). Thus, the main aim of this study is to minimize the use of natural resources through the reuse of three waste materials: HDPE, mo-tor oil and RAP. Different amounts of waste motor oil and HDPE were added to an asphalt binder with 50% aged bitumen. The best solutions to produce the modified binders (4.5 to 5.0% HDPE and 10 % waste motor oil) performed as well as a conventional bitumen although they only used 35 % of virgin bitumen. Asphalt mixtures with 50 % RAP were produced with the selected modified binders, improving some characteristics in comparison with conventional asphalt mixtures. In conclusion, these wastes can revive in new asphalt mixtures.