1000 resultados para nonlinear cryptanalysis
Resumo:
The intensity-dependent two-photon absorption and nonlinear refraction coefficients of GaP optical crystal at 800 nm were measured with time-resolved femtosecond pump-probe technique. A nonlinear refraction coefficient of 1.7*10^(-17) m2/W and a two-photon absorption coefficient of 1.5*10^(-12) m/W of GaP crystal were obtained at a pump intensity of 3.5*10^(12) W/m2. The nonlinear refraction coefficient saturates at 3.5*10^(12) W/m2, while the two-photon absorption coefficient keeps linear increase at 6*10^(12) W/m2. Furthermore, fifth-order nonlinear refraction of the GaP optical crystal was revealed to occur above pump intensity of 3.5*10^(12) W/m2.
Resumo:
The necessity of the use of the block and parallel modeling of the nonlinear continuous mappings with NN is firstly expounded quantitatively. Then, a practical approach for the block and parallel modeling of the nonlinear continuous mappings with NN is proposed. Finally, an example indicating that the method raised in this paper can be realized by suitable existed software is given. The results of the experiment of the model discussed on the 3-D Mexican straw hat indicate that the block and parallel modeling based on NN is more precise and faster in computation than the direct ones and it is obviously a concrete example and the development of the large-scale general model established by Tu Xuyan.
Resumo:
Nonlinear wave equation for a one-dimensional anharmonic crystal lattice in terms of its microscopic parameters is obtained by means of a continuum approximation. Using a small time scale transformation, the nonlinear wave equation is reduced to a combined KdV equation and its single soliton solution yields the supersonic kink form of nonlinear elastic waves for the system.
Resumo:
于2010-11-23批量导入
High-field nonlinear perpendicular transport in a GaAs/Al_(0.3)Ga_(0.7) As short-period superlattice
Resumo:
于2010-11-23批量导入
Resumo:
We have proposed a novel type of photonic crystal fiber (PCF) with low dispersion and high nonlinearity for four-wave mixing. This type of fiber is composed of a solid silica core and a cladding with a squeezed hexagonal lattice elliptical airhole along the fiber length. Its dispersion and nonlinearity coefficient are investigated simultaneously by using the full vectorial finite element method. Numerical results show that the proposed highly nonlinear low-dispersion fiber has a total dispersion as low as +/- 2.5 ps nm(-1) km(-1) over an ultrabroad wavelength range from 1.43 to 1.8 mu m, and the corresponding nonlinearity coefficient and birefringence are about 150 W-1 km(-1) and 2.5 x 10(-3) at 1.55 mu m, respectively. The proposed PCF with low ultraflattened dispersion, high nonlinearity, and high birefringence can have important application in four-wave mixing. (C) 2010 Optical Society of America
Resumo:
We propose a simple approach to generate a high quality 10 GHz 1.9 ps optical pulse train using a semiconductor optical amplifier and silica-based highly nonlinear fiber. An optical pulse generator based on our proposed scheme is easy to set up with commercially available optical components. A 10 GHz, 1.9 ps optical pulse train is obtained with timing jitter as low as 60 fs over the frequency range 10 Hz-1 MHz. With a wavelength tunable CW laser, a wide wavelength tunable span can be achieved over the entire C band. The proposed optical pulse generator also can operate at different repetition rates from 3 to 10 GHz.
Resumo:
Switchable multiwavelength fiber laser outputs with a wide tuning range are experimentally observed in an ultralong cavity. Because of the long spooled single-mode fiber and filter effect of the cavity, multiwavelength lasers with the spacing of similar to 14.5 nm are obtained. The proposed fiber laser has the capacity of simultaneously emitting the three wavelengths. By means of adjusting the polarization controllers, the arbitrary single- and dual-wavelength operations are achieved in our laser. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3485754]
Resumo:
We report development of a new fiber doped with PbSe quantum dots for nonlinear optical applications. PbSe quantum dots related absorption peaks were obtained at 1021, 1093 and 1351 nm. The resonant optical nonlinearity and attenuation at 1500 nm were measured to be 9.4 × 10−16 m2/W and 0.01 dB/m, respectively. The emission around 1540 nm was observed upon near resonant pumping at 1064 nm.
Resumo:
We study the topological defects in the nonlinear O(3) sigma model in terms of the decomposition of U(1) gauge potential. Time-dependent baby skyrmions are discussed in the (2 + 1)-dimensional spacetime with the CP1 field. Furthermore, we show that there are three kinds of topological defects-vortex lines, point defects and knot exist in the (3 + 1)-dimensional model, and their topological charges, locations and motions are determined by the phi-mapping topological current theory.
Resumo:
We give a generalized Lagrangian density of 1 + 1 Dimensional O( 3) nonlinear sigma model with subsidiary constraints, different Lagrange multiplier fields and topological term, find a lost intrinsic constraint condition, convert the subsidiary constraints into inner constraints in the nonlinear sigma model, give the example of not introducing the lost constraint. N = 0, by comparing the example with the case of introducing the lost constraint, we obtain that when not introducing the lost constraint, one has to obtain a lot of various non-intrinsic constraints. We further deduce the gauge generator, give general BRST transformation of the model under the general conditions. It is discovered that there exists a gauge parameter beta originating from the freedom degree of BRST transformation in a general O( 3) nonlinear sigma model, and we gain the general commutation relations of ghost field.
Resumo:
In this Letter, we conduct an extensive study of the two-segment Frenkel-Kontorova model. We show that the rectification effect of the heat flux reported in recent literature is possible only in the weak interfacial coupling limit. The rectification effect will be reversed when the properties of the interface and the system size change. These two types of asymmetric heat conduction are governed by different mechanisms though both are induced by nonlinearity. An intuitive physical picture is proposed to interpret the reversal of the rectification effect. Since asymmetric heat conduction depends critically on the properties of the interface and the system size, it is probably not an easy task to fabricate a thermal rectifier or thermal diode in practice.
Resumo:
为实现对模型不确定的有约束非线性系统在特定时间域上输出轨迹的有效跟踪,将改进的克隆选择算法用于求解迭代学习控制中的优化问题。提出基于克隆选择算法的非线性优化迭代学习控制。在每次迭代运算后,一个克隆选择算法用于求解下次迭代运算中的最优输入,另一个克隆选择算法用于修正系统参考模型。仿真结果表明,该方法比GA-ILC具有更快的收敛速度,能够有效处理输入上的约束以及模型不确定问题,通过少数几次迭代学习就能取得满意的跟踪效果。