950 resultados para niche packing
Resumo:
Toxoplasma gondii and Trypanosoma cruzi are intracellular parasites which, as part of their life cycle, induce a potent cell-mediated immunity (CMI) maintained by Th1 lymphocytes and IFN-g. In both cases, induction of a strong CMI is thought to protect the host against rapid parasite multiplication and consequent pathology and lethality during the acute phase of infection. However, the parasitic infection is not eliminated by the immune system and the vertebrate host serves as a parasite reservoir. In contrast, Leishmania sp, which is a slow growing parasite, appears to evade induction of CMI during early stages of infection as a strategy for surviving in a hostile environment (i.e., inside the macrophages which are their obligatory niche in the vertebrate host). Recent reports show that the initiation of IL-12 synthesis by macrophages during these parasitic infections is a key event in regulating CMI and disease outcome. The studies reviewed here indicate that activation/inhibition of distinct signaling pathways and certain macrophage functions by intracellular protozoa are important events in inducing/modulating the immune response of their vertebrate hosts, allowing parasite and host survival and therefore maintaining parasite life cycles.
Resumo:
Cholesterol (Chol) is an important lipid in cellular membranes functioning both as a membrane fluidity regulator, permeability regulator and co-factor for some membrane proteins, e.g. G-protein coupled receptors. It also participates in the formation of signaling platforms and gives the membrane more mechanical strenght to prevent osmotic lysis of the cell. The sterol structure is very conserved and already minor structural modifications can completely abolish its membrane functions. The right interaction with adjacent lipids and the preference of certain lipid structures over others are also key factors in determining the membrane properties of cholesterol. Because of the many important properties of cholesterol it is of value to understand the forces and structural properties that govern the membrane behavior of this sterol. In this thesis we have used established fluorescence spectroscopy methods to study the membrane behavior of both cholesterol and some of its 3β-modified analogs. Using several fluorescent probes we have established how the acyl chain order of the two main lipid species, sphingomyelin (SM) and phosphatidylcholine (PC) affect sterol partitioning as well as characterized the membrane properties of 3β-aminocholesterol and cholesteryl phosphocholine. We concluded that cholesterol prefers SM over PC at equal acyl chain order, indicating that other structural properties besides the acyl chain order are important for sphingomyelin-sterol interactions. A positive charge at the 3β position only caused minor changes in the sterol membrane behavior compared to cholesterol. A large phosphocholine head group caused a disruption in membrane packing together with other membrane lipids with large head groups, but was also able to form stable fluid bilayers together with ceramide and cholesterol. The Ability of the large head group sterol to form bilayers together with ceramide was further explored in the last paper where cholesteryl phosphocholine/ceramide (Chol-PC/Cer) complexes were successfully used to transfer ceramide into cultured cells.
Resumo:
Innovative gas cooled reactors, such as the pebble bed reactor (PBR) and the gas cooled fast reactor (GFR) offer higher efficiency and new application areas for nuclear energy. Numerical methods were applied and developed to analyse the specific features of these reactor types with fully three dimensional calculation models. In the first part of this thesis, discrete element method (DEM) was used for a physically realistic modelling of the packing of fuel pebbles in PBR geometries and methods were developed for utilising the DEM results in subsequent reactor physics and thermal-hydraulics calculations. In the second part, the flow and heat transfer for a single gas cooled fuel rod of a GFR were investigated with computational fluid dynamics (CFD) methods. An in-house DEM implementation was validated and used for packing simulations, in which the effect of several parameters on the resulting average packing density was investigated. The restitution coefficient was found out to have the most significant effect. The results can be utilised in further work to obtain a pebble bed with a specific packing density. The packing structures of selected pebble beds were also analysed in detail and local variations in the packing density were observed, which should be taken into account especially in the reactor core thermal-hydraulic analyses. Two open source DEM codes were used to produce stochastic pebble bed configurations to add realism and improve the accuracy of criticality calculations performed with the Monte Carlo reactor physics code Serpent. Russian ASTRA criticality experiments were calculated. Pebble beds corresponding to the experimental specifications within measurement uncertainties were produced in DEM simulations and successfully exported into the subsequent reactor physics analysis. With the developed approach, two typical issues in Monte Carlo reactor physics calculations of pebble bed geometries were avoided. A novel method was developed and implemented as a MATLAB code to calculate porosities in the cells of a CFD calculation mesh constructed over a pebble bed obtained from DEM simulations. The code was further developed to distribute power and temperature data accurately between discrete based reactor physics and continuum based thermal-hydraulics models to enable coupled reactor core calculations. The developed method was also found useful for analysing sphere packings in general. CFD calculations were performed to investigate the pressure losses and heat transfer in three dimensional air cooled smooth and rib roughened rod geometries, housed inside a hexagonal flow channel representing a sub-channel of a single fuel rod of a GFR. The CFD geometry represented the test section of the L-STAR experimental facility at Karlsruhe Institute of Technology and the calculation results were compared to the corresponding experimental results. Knowledge was gained of the adequacy of various turbulence models and of the modelling requirements and issues related to the specific application. The obtained pressure loss results were in a relatively good agreement with the experimental data. Heat transfer in the smooth rod geometry was somewhat under predicted, which can partly be explained by unaccounted heat losses and uncertainties. In the rib roughened geometry heat transfer was severely under predicted by the used realisable k − epsilon turbulence model. An additional calculation with a v2 − f turbulence model showed significant improvement in the heat transfer results, which is most likely due to the better performance of the model in separated flow problems. Further investigations are suggested before using CFD to make conclusions of the heat transfer performance of rib roughened GFR fuel rod geometries. It is suggested that the viewpoints of numerical modelling are included in the planning of experiments to ease the challenging model construction and simulations and to avoid introducing additional sources of uncertainties. To facilitate the use of advanced calculation approaches, multi-physical aspects in experiments should also be considered and documented in a reasonable detail.
Resumo:
The interaction mean free path between neutrons and TRISO particles is simulated using scripts written in MATLAB to solve the increasing error present with an increase in the packing factor in the reactor physics code Serpent. Their movement is tracked both in an unbounded and in a bounded space. Their track is calculated, depending on the program, linearly directly using the position vectors of the neutrons and the surface equations of all the fuel particles; by dividing the space in multiple subspaces, each of which contain a fraction of the total number of particles, and choosing the particles from those subspaces through which the neutron passes through; or by choosing the particles that lie within an infinite cylinder formed on the movement axis of the neutron. The estimate from the current analytical model, based on an exponential distribution, for the mean free path, utilized by Serpent, is used as a reference result. The results from the implicit model in Serpent imply a too long mean free path with high packing factors. The received results support this observation by producing, with a packing factor of 17 %, approximately 2.46 % shorter mean free path compared to the reference model. This is supported by the packing factor experienced by the neutron, the simulation of which resulted in a 17.29 % packing factor. It was also observed that the neutrons leaving from the surfaces of the fuel particles, in contrast to those starting inside the moderator, do not follow the exponential distribution. The current model, as it is, is thus not valid in the determination of the free path lengths of the neutrons.
Resumo:
Tämä työ tutkii ja tarkastelee transitio-kokeilua ravinnetaloudessa. Transitio-kokeilu on toimintatutkimusprojekti, joka toteutetaan systeemisen muutoksen ajattelun mukaisesti alhaalta ylöspäin. Ravinnetalous määritetään tarkemmin työn kautta sekä analysoidaan monitaso-perspektiivin näkökulmasta. Ravinnetalous on terminä varsin tuntematon ja tarvitsee enemmän tunnettavuutta laajemman yleisön edessä. Transitio-areenan ja transitio-visioiden kehittäminen ovat työn keskipisteessä, koska ne ovat tärkeimpiä vaiheita transition alkuvaiheessa. Joukko sidosryhmätoimijoita osallistuu transitio areenaan sekä visioiden jatkokehittelyyn. Visio(t) luodaan ensisijaisesti backcasting-menetelmällä, jota myös täydennetään tavanomaisella ennustamisella. Backcasting- menetelmä on osin osallistava ja siinä käytetään ravinteiden planeettarajoja kvantitatiivisina pääperiaatteina, minkä tuloksena myös visiot ovat osin kvantitatiivisia. Transitio areenan kokoaminen ja fasilitointi aiheuttavat hankalia kysymyksiä, jotka tarvitsevat jatko-tutkimusta. Alhaalta-ylöspäin organisoitu transitio-arena houkuttelee niche-toimijoita, mutta epäonnistuu sitouttamaan julkisen vallan toimijoita. Toimintamallin voimasuhteet, politiikka ja transition vakiinnuttaminen tulisivat olla jatko-toimenpiteinä niin tutkimuksessa kuin toiminnassakin.
Resumo:
Effective processes to fractionate the main compounds in biomass, such as wood, are a prerequisite for an effective biorefinery. Water is environmentally friendly and widely used in industry, which makes it a potential solvent also for forest biomass. At elevated temperatures over 100 °C, water can readily hydrolyse and dissolve hemicelluloses from biomass. In this work, birch sawdust was extracted using pressurized hot water (PHWE) flow-through systems. The hypothesis of the work was that it is possible to obtain polymeric, water-soluble hemicelluloses from birch sawdust using flow-through PHW extractions at both laboratory and large scale. Different extraction temperatures in the range 140–200 °C were evaluated to see the effect of temperature to the xylan yield. The yields and extracted hemicelluloses were analysed to obtain sugar ratios, the amount of acetyl groups, furfurals and the xylan yields. Higher extraction temperatures increased the xylan yield, but decreased the molar mass of the dissolved xylan. As the extraction temperature increased, more acetic acid was released from the hemicelluloses, thus further decreasing the pH of the extract. There were only trace amounts of furfurals present after the extractions, indicating that the treatment was mild enough not to degrade the sugars further. The sawdust extraction density was increased by packing more sawdust in the laboratory scale extraction vessel. The aim was to obtain extracts with higher concentration than in typical extraction densities. The extraction times and water flow rates were kept constant during these extractions. The higher sawdust packing degree decreased the water use in the extractions and the extracts had higher hemicellulose concentrations than extractions with lower sawdust degrees of packing. The molar masses of the hemicelluloses were similar in higher packing degrees and in the degrees of packing that were used in typical PHWE flow-through extractions. The structure of extracted sawdust was investigated using small angle-(SAXS) and wide angle (WAXS) x-ray scattering. The cell wall topography of birch sawdust and extracted sawdust was compared using x-ray tomography. The results showed that the structure of the cell walls of extracted birch sawdust was preserved but the cell walls were thinner after the extractions. Larger pores were opened inside the fibres and cellulose microfibrils were more tightly packed after the extraction. Acetate buffers were used to control the pH of the extracts during the extractions. The pH control prevented excessive xylan hydrolysis and increased the molar masses of the extracted xylans. The yields of buffered extractions were lower than for plain water extractions at 160–170 °C, but at 180 °C yields were similar to those from plain water and pH buffers. The pH can thus be controlled during extraction with acetate buffer to obtain xylan with higher molar mass than those obtainable using plain water. Birch sawdust was extracted both in the laboratory and pilot scale. The performance of the PHWE flow-through system was evaluated in the laboratory and the pilot scale using vessels with the same shape but different volumes, with the same relative water flow through the sawdust bed, and in the same extraction temperature. Pre-steaming improved the extraction efficiency and the water flow through the sawdust bed. The extracted birch sawdust and the extracted xylan were similar in both laboratory and pilot scale. The PHWE system was successfully scaled up by a factor of 6000 from the laboratory to pilot scale and extractions performed equally well in both scales. The results show that a flow-through system can be further scaled up and used to extract water-soluble xylans from birch sawdust. Extracted xylans can be concentrated, purified, and then used in e.g. films and barriers, or as building blocks for novel material applications.
Resumo:
Bone marrow stromal cells are critical regulators of hematopoiesis. Osteoblasts are part of the stromal cell support system in bone marrow and may be derived from a common precursor. Several studies suggested that osteoblasts regulate hematopoiesis, yet the entire mechanism is not understood. It is clear, however, that both hematopoietic precursors and osteoblasts interact for the production of osteoclasts and the activation of resorption. We observed that hematopoietic stem cells (HSCs) regulate osteoblastic secretion of various growth factors, and that osteoblasts express some soluble factors exclusively in the presence of HSCs. Osteoblasts and hematopoietic cells are closely associated with each other in the bone marrow, suggesting a reciprocal relationship between them to develop the HSC niche. One critical component regulating the niche is stromal-derived factor-1 (SDF-1) and its receptor CXCR4 which regulates stem cell homing and, as we have recently demonstrated, plays a crucial role in facilitating those tumors which metastasize to bone. Osteoblasts produce abundant amounts of SDF-1 and therefore osteoblasts play an important role in metastasis. These findings are discussed in the context of the role of osteoblasts in marrow function in health and disease.
Resumo:
The lipids and proteins of biomembranes exhibit highly dissimilar conformations, geometrical shapes, amphipathicity, and thermodynamic properties which constrain their two-dimensional molecular packing, electrostatics, and interaction preferences. This causes inevitable development of large local tensions that frequently relax into phase or compositional immiscibility along lateral and transverse planes of the membrane. On the other hand, these effects constitute the very codes that mediate molecular and structural changes determining and controlling the possibilities for enzymatic activity, apposition and recombination in biomembranes. The presence of proteins constitutes a major perturbing factor for the membrane sculpturing both in terms of its surface topography and dynamics. We will focus on some results from our group within this context and summarize some recent evidence for the active involvement of extrinsic (myelin basic protein), integral (Folch-Lees proteolipid protein) and amphitropic (c-Fos and c-Jun) proteins, as well as a membrane-active amphitropic phosphohydrolytic enzyme (neutral sphingomyelinase), in the process of lateral segregation and dynamics of phase domains, sculpturing of the surface topography, and the bi-directional modulation of the membrane biochemical reactivity.
Resumo:
Diplomityössä tarkoituksena oli tutkia miten potkurilaitteita valmistavan yrityksen logistiikkakeskuksen siirtyminen kokoonpanotehtaan viereen vaikuttaisi yrityksen logistisiin prosesseihin. Tutkimuskohteena olevan yrityksen logistiikkakeskus muodostuu keskusvarastosta ja pakkaamosta. Nykytilanteen selvityksen pohjalta kartoitettiin logistiikkakeskuksen ja kokoonpanotehtaan väliset nykytilan logistiset prosessit, niissä esiintyvät ongelmat sekä vaiheiden vaatimat resurssit. Käsiteltävät prosessit koostuvat pääasiassa tulo- ja lähtölogistiikan toiminnoista sekä sisäisistä materiaalisiirroista. Tutkimuksen perusteella logistiikkakeskuksen uudella sijainnilla kohdeyrityksen on mahdollista tehostaa monia logistisia toimintojaan ja näin parantaa logistista kilpailukykyään. Lisäksi monia nykytoiminnoissa esiintyviä ongelmia ja niiden aiheuttamia lieveilmiötä on mahdollista poistaa sijainnin muutoksen myötä.
Resumo:
Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR) and normotensive control rat strains (WKY and NWR). Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.
Resumo:
The phyllosphere, i.e., the aerial parts of the plant, provides one of the most important niches for microbial colonization. This niche supports the survival and, often, proliferation of microbes such as fungi and bacteria with diverse lifestyles including epiphytes, saprophytes, and pathogens. Although most microbes may complete the life cycle on the leaf surface, pathogens must enter the leaf and multiply aggressively in the leaf interior. Natural surface openings, such as stomata, are important entry sites for bacteria. Stomata are known for their vital role in water transpiration and gas exchange between the plant and the environment that is essential for plant growth. Recent studies have shown that stomata can also play an active role in limiting bacterial invasion of both human and plant pathogenic bacteria as part of the plant innate immune system. As counter-defense, plant pathogens such as Pseudomonas syringae pv tomato (Pst) DC3000 use the virulence factor coronatine to suppress stomate-based defense. A novel and crucial early battleground in host-pathogen interaction in the phyllosphere has been discovered with broad implications in the study of bacterial pathogenesis, host immunity, and molecular ecology of bacterial diseases.
Resumo:
Technological innovations and the advent of digitalization have led retail business into one of its biggest transformations of all time. Consumer behaviour has changed rapidly and the customers are ever more powerful, demanding, tech-savvy and moving on various plat-forms. These attributes will continue to drive the development and robustly restructure the architecture of value creation in the retail business. The largest retail category, grocery yet awaits for a real disruption, but the signals for major change are already on the horizon. The first wave of online grocery retail was introduced in the mid 1990’s and it throve until millennium. Many overreactions, heavy investments and the burst IT-bubble almost stag-nated the whole industry for a long period of time. The second wave started with a venge-ance around 2010. Some research was carried out during the first wave from a single-viewpoint of online grocery retail, but without a comprehensive approach to online-offline business model integration. Now the accelerating growth of e-business has initiated an increased interest to examine the transformation from traditional business models towards e-business models and their integration on the companies’ traditional business models. This research strove to examine how can we recognize and analyze how digitalization and online channels are affecting the business models of grocery retail, by using business mod-el canvas as an analysis tool. Furthermore business model innovation and omnichannel retail were presented and suggested as potential solutions for these changes. 21 experts in online grocery industry were being interviewed. The thoughts of the informants were being qualitatively analysed by using an analysis tool called the business model canvas. The aim of this research was to portray a holistic view on the Omnichannel grocery retail business model, and the value chain, in which the case company Arina along with its partners are operating. The key conclusions exhibited that online grocery retail business model is not an alterna-tive model nor a substitute for the traditional grocery retail business model, though all of the business model elements are to some extent affected by it, but rather a complementary business model that should be integrated into the prevailing, conventional grocery retail business model. A set of business model elements, such as value proposition and distribu-tion channels were recognized as the most important ones and sources of innovation within these components were being illustrated. Segments for online grocery retail were empiri-cally established as polarized niche markets in contrast of the segmented mass-market of the conventional grocery retail. Business model innovation was proven to be a considera-ble method and a conceptual framework, by which to come across with new value proposi-tions that create competitive advantage for the company in the contemporary, changing business environment. Arina as a retailer can be considered as a industry model innovator, since it has initiated an entire industry in its market area, where other players have later on embarked on, and in which the contributors of the value chain, such as Posti depend on it to a great extent. Consumer behaviour clearly affects and appears everywhere in the digi-talized grocery trade and it drives customers to multiple platforms where retailers need to be present. Omnichannel retail business model was suggested to be the solution, in which the new technologies are being utilized, contemporary consumer behaviour is embedded in decision-making and all of the segments and their value propositions are being served seamlessly across the channels.
Resumo:
The consumption of Brazilian cassava has been reduced due to a lack of adjustment to the modern lifestyle. To reverse this trend, new products could be developed specifically targeted to high-value niche markets. Cereal bars stand out as fast food high in nutritional value. A bar formula mimicking cereal bars was prepared using a mixture of Brazilian cassava flour, hydrogenated vegetable fat, dried bananas, ground cashew nuts, and glucose syrup. After being pressed, the bars were dried for 1 hour at 65 °C, packaged in films, and stored under ambient conditions. Its stability was continuously monitored for 210 days in order to ensure its safety and enable its introduction to the market. Texture loss was observed in the packed bars after 90 days of storage, but the sensory characteristics allowed the testers to perceive this tendency after only 30 days of storage. However, chemical, physical, and microbial analyses confirmed that the bars were safe for consumption for 180 days. The results showed that a 45 g cassava flour-based bar enriched with nuts and dried fruits can meet 6% of the recommended daily fiber intake with a caloric value between that of the common cereal bar and that of an energy bar. Adapting the formula with ingredients (fruits, nuts) from different regions of Brazil may add value to this traditional product as a fast food.
Resumo:
Modified atmosphere is a method of food preservation that provides increased lifetime, decreases deterioration losses, and facilitates marketing. The objective of this study was to evaluate the efficiency of different plastic films in modifying the atmosphere around Eva apples to assure quality maintenance during postharvest storage. The fruits were cleaned and separated into three treatment groups: polypropylene, low density polyethylene, and high density polyethylene packing with a total of 5 fruits per package for each evaluation period. A group of control apples was not submitted to atmospheric modification. After the treatment, all fruits were stored at 0.5±0.5°C (cold storage) for up to 225 days. The analyses were performed at 45, 135, and 225 days after cold storage. Respiration, ethylene production, firmness, mass loss, total pectin, soluble pectin, soluble solids, total acidity, and epidermis background color of each treatment group were evaluated. The high density polyethylene film treatment did not show a decrease in ethylene production during storage and allowed the fruits to maintain a greater firmness and smaller percentage of mass loss during the study period. Moreover, the storage of the Eva apple cultivar under modified atmosphere allowed the preservation of quality for up to seven months.
Resumo:
Covering the grapevine rows to delay the maturity and harvest date became widely practiced in 'Sultana Seedless' vineyards. The research work was conducted to test different cover materials (polypropylene cross-stitch, life pack, mogul and transparent polyethylene) in respect to their effects on grape quality and storability. Harvest was delayed for one month in covered plots. Harvested grapes were packed and transferred to storage rooms after pre-cooling. During packing, the grape clusters were sealed in PE bags with sulphur dioxide pads. The grapes were stored for 90 days in the first year and 120 days in the second year, at -0.5ºC and 90% RH. All the grape clusters were healthy and of marketable quality after 90 days of storage period. In the first year, at the end of the storage, only those grapes harvested from the rows covered with polypropylene cross-stitch showed fungal growth. The sensory quality scores revealed a lower level of preference after 120 days of storage. The effects of the covering materials tested were similar regarding grape quality and storage performance except the transparent polyethylene that damaged the grapevine leaves.