843 resultados para nano-structured bainite
Resumo:
This paper argues that the structured dependency thesis must be extended to incorporate political power. It outlines a political framework of analysis with which to identify who gains and who loses from social policy. I argue that public policy for older people is a product not only of social structures but also of political decision-making. The Schneider and Ingram (1993) ‘ target populations’ model is used to investigate how the social construction of groups as dependent equates with lower levels of influence on policy making. In United Kingdom and European research, older people are identified as politically quiescent, but conversely in the United States seniors are viewed as one of the most influential and cohesive interest groups in the political culture. Why are American seniors perceived as politically powerful, while older people in Europe are viewed as dependent and politically weak? This paper applies the ‘target populations’ model to senior policy in the Republic of Ireland to investigate how theoretical work in the United States may be used to identify the significance of senior power in policy development. I conclude that research must recognise the connections between power, politics and social constructions to investigate how state policies can influence the likelihood that seniors will resist structured dependency using political means.
Resumo:
Bias dependent mechanisms of irreversible cathodic and anodic processes on a pure CeO2 film are studied using modified atomic force microscopy (AFM). For a moderate positive bias applied to the AFM tip an irreversible electrochemical reduction reaction is found, associated with significant local volume expansion. By changing the experimental conditions we are able to deduce the possible role of water in this process. Simultaneous detection of tip height and current allows the onset of conductivity and the electrochemical charge transfer process to be separated, further elucidating the reaction mechanism. The standard anodic/cathodic behavior is recovered in the high bias regime, where a sizable transport current flows between the tip and the film. These studies give insight into the mechanisms of the tip-induced electrochemical reactions as mediated by electronic currents, and into the role of water in these processes, as well as providing a different approach for electrochemical nano-writing.
Resumo:
Nanomechanical response of a silicon specimen coated with a sp3 crystalline carbon coating (1.8 nm thickness) was investigated using MD simulation. A sharp conical rigid tip was impacted at the speed of 50 m/sec up to a depth of ~80% of the coating thickness. Unlike pure silicon specimen, no metallic phase transformation was observed i.e. a thin coating was able to resist Si-I to Si-II metallic phase transformation signifying that the coating could alter the stress distribution and thereby the contact tribology of the substrate. The stress state of the system, radial distribution function and the load-displacement curve were all aligned with above observations
Resumo:
Across a range of domains in psychology different theories assume different mental representations of knowledge. For example, in the literature on category-based inductive reasoning, certain theories (e.g., Rogers & McClelland, 2004; Sloutsky & Fisher, 2008) assume that the knowledge upon which inductive inferences are based is associative, whereas others (e.g., Heit & Rubinstein, 1994; Kemp & Tenenbaum, 2009; Osherson, Smith, Wilkie, López, & Shafir, 1990) assume that knowledge is structured. In this article we investigate whether associative and structured knowledge underlie inductive reasoning to different degrees under different processing conditions. We develop a measure of knowledge about the degree of association between categories and show that it dissociates from measures of structured knowledge. In Experiment 1 participants rated the strength of inductive arguments whose categories were either taxonomically or causally related. A measure of associative strength predicted reasoning when people had to respond fast, whereas causal and taxonomic knowledge explained inference strength when people responded slowly. In Experiment 2, we also manipulated whether the causal link between the categories was predictive or diagnostic. Participants preferred predictive to diagnostic arguments except when they responded under cognitive load. In Experiment 3, using an open-ended induction paradigm, people generated and evaluated their own conclusion categories. Inductive strength was predicted by associative strength under heavy cognitive load, whereas an index of structured knowledge was more predictive of inductive strength under minimal cognitive load. Together these results suggest that associative and structured models of reasoning apply best under different processing conditions and that the application of structured knowledge in reasoning is often effortful.
Resumo:
Background and purpose
The dominant psychometric discourse of OSCEs may lead to unexpected problems, such as a checklist-based student performance1 which under emphasises the clinical relationship with student and standardised patient (SP). Such encounters can be dehumanising for SPs2 and have implications for what students learn about relational skills through the assessment process. In this study we explore medical students’ experiences of undertaking OSCEs using a phenomenological frame.
Methodology
Interpretative phenomenological analysis is a form of qualitative methodology which has strong resonance with existentialism and focuses on the lived experience without significant reference to external political or discursive
forces.
Six 4th year undergraduate medical students from Queen’s University Belfast were recruited in December 2013. Maximum variation sampling was used. Students were interviewed by a researcher in the week prior to the
OSCE and then again in the week following the OSCE in Jan 2014. Interviews were minimally structured in order to be open to respondents, rather than adhering to a fixed topic guide, but focussed on participants’ experiences, thoughts and feelings about taking part in OSCEs. Interviews were audio-recorded and
transcribed. Students were also asked to complete a short diary entry in the days prior to the OSCEs and another immediately following. Diary entries were written, emailed or audio-recorded at student’s preference.
Results
Transcripts are currently being analysed by interpretative phenomenological analysis. Preliminary analysis has demonstrated the significance of students’ relationships within the OSCE triad (student, SP and examiner); the effect of the immediate examination environment; realism versus roleplay; students’ perceptions of the purpose of assessment; and coping mechanisms.
Full results will be available by the time of the conference.
Conclusion and Discussion
Understanding the student experience in OSCEs is a crucial step in understanding the complex construction of relationships within the OSCE triad. The focus in OSCEs is typically on standardisation and reliability, but in exploring social interactions we may refocus attention on their inherent potential for learning and effects on both students and patients.
References
1. Hodges B. Medical education and the maintenance of incompetence. Med Teach 2006;28(8):690-6
2. Johnston JL, Lundy G, McCullough M, Gormley GJ. The view from over there: reframing the OSCE through the experience of standardised patient
raters. Med Educ 2013;47(9):899-909
Resumo:
In this article, the machining conditions to achieve nanometric surface roughness in finish cut microelectrodischarge milling were investigated. For a constant gap voltage, the effect of feed rate and capacitance was studied on average surface roughness (Ra) and maximum peak-to-valley roughness height (Ry). Statistical models were developed using a three-level, two-factor experimental design. The developed models minimized Ra and Ry by desirability function approach. Maximum desirability was found to be more than 98%. The minimum values of Ra and Ry were 23 and 173 nm, respectively, for 1.00 μm s-1 feed rate and 0.01 nF capacitance. Verification experiments were conducted to check the accuracy of the models, where the responses were found to be very close to the predicted values. Thus, the developed models can be used to generate nanometric level surface finish, which are useful for many applications in microelectromechanical systems.
Resumo:
Previous studies have established that some of the wear damage seen on cast CoCrMo joint surface is caused by entrained third-body hard particles. In this study, wet-cell micro-indentation and nano-scratch tests have been carried out with the direct aim of simulating wear damage induced by single abrasive particles entrained between the surfaces of cast CoCrMo hip implants. In situ electrochemical current noise measurements were uniquely performed to detect and study the wear-induced corrosion as well as the repassivation kinetics under the micro-/nano-scale tribological process. A mathematical model has been explored for the CoCrMo repassivation kinetics after surface oxide film rupture. Greater insights into the nature of the CoCrMo micro-/nano-scale wear-corrosion mechanisms and deformation processes are determined, including the identification of slip band formation, matrix/carbide deformation, nanocrystalline structure formation and strain-induced phase transformation. The electrochemical current noise provides evidence of instantaneous transient corrosion activity at the wearing surface resulting from partial oxide rupturing and stripping, concurrent with the indent/scratch.
Resumo:
In this paper, a multi-level wordline driver scheme is presented to improve SRAM read and write stability while lowering power consumption during hold operation. The proposed circuit applies a shaped wordline voltage pulse during read mode and a boosted wordline pulse during write mode. During read, the applied shaped pulse is tuned at nominal voltage for short period of time, whereas for the remaining access time, the wordline voltage is reduced to a lower level. This pulse results in improved read noise margin without any degradation in access time which is explained by examining the dynamic and nonlinear behavior of the SRAM cell. Furthermore, during hold mode, the wordline voltage starts from a negative value and reaches zero voltage, resulting in a lower leakage current compared to conventional SRAM. Our simulations using TSMC 65nm process show that the proposed wordline driver results in 2X improvement in static read noise margin while the write margin is improved by 3X. In addition, the total leakage of the proposed SRAM is reduced by 10% while the total power is improved by 12% in the worst case scenario of a single SRAM cell. The total area penalty is 10% for a 128Kb standard SRAM array.
Resumo:
In this paper, a multi-level wordline driver scheme is presented to improve 6T-SRAM read and write stability. The proposed wordline driver generates a shaped pulse during the read mode and a boosted wordline during the write mode. During read, the shaped pulse is tuned at nominal voltage for a short period of time, whereas for the remaining access time, the wordline voltage is reduced to save the power consumption of the cell. This shaped wordline pulse results in improved read noise margin without any degradation in access time for small wordline load. The improvement is explained by examining the dynamic and nonlinear behavior of the SRAM cell. Furthermore, during the hold mode, for a short time (depending on the size of boosting capacitance), wordline voltage becomes negative and charges up to zero after a specific time that results in a lower leakage current compared to conventional SRAM. The proposed technique results in at least 2× improvement in read noise margin while it improves write margin by 3× for lower supply voltages than 0.7 V. The leakage power for the proposed SRAM is reduced by 2% while the total power is improved by 3% in the worst case scenario for an SRAM array. The main advantage of the proposed wordline driver is the improvement of dynamic noise margin with less than 2.5% penalty in area. TSMC 65 nm technology models are used for simulations.
Resumo:
Zinc selenide nanospheres were prepared from a diphenyl diselenide precursor and a range of chloro- and bromozincate(II) ionic liquids via a microwave-assisted ionothermal route; this is the first report on the use of microwave irradiation in combination with ionic liquids to prepare this material. The method is a time-efficient and a facile one-pot reaction to produce zinc(II) selenide nanomaterials. The product formation in the ionic liquids has been monitored using Raman spectroscopy. The products have been characterised using PXRD, SEM, EDX, photoluminescence and UV-VIS spectroscopy. Advantages of this new route, such as ease of solubilisation of all reactants into one phase at high concentration, the negligible vapour pressure irrespective of the reaction temperature, very fast reaction times, ease of potential scale-up and reproducibility are discussed.