858 resultados para mitochondrial integrity
Resumo:
Euglossa fimbriata is a euglossine species widely distributed in Brazil and occurring primarily in Atlantic Forest remnants. In this study, the genetic mitochondrial structure of E. fimbriata from six Atlantic Forest fragments was studied by RFLP analysis of three PCR-amplified mtDNA gene segments (16S, COI-COII, and cyt b). Ten composite haplotypes were identified, six of which were exclusive and represented singleton mitotypes. Low haplotype diversity (0.085-0.289) and nucleotide diversity (0.000-0.002) were detected within samples. AMOVA partitioned 91.13% of the overall genetic variation within samples and 8.87% (I center dot(st) = 0.089; P < 0.05) among samples. Pairwise comparisons indicated high levels of differentiation among some pairs of samples (I center dot(st) = 0.161-0.218; P < 0.05). These high levels indicate that these populations of E. fimbriata, despite their highly fragmented landscape, apparently have not suffered loss of genetic variation, suggesting that this particular population is not currently endangered.
Resumo:
In this study we investigated energy metabolism in the mdx mouse brain. To this end, prefrontal cortex, cerebellum, hippocampus, striatum, and cortex were analyzed. There was a decrease in Complex I but not in Complex 11 activity in all structures. There was an increase in Complex III activity in striatum and a decrease in Complex IV activity in prefrontal cortex and striatum. Mitochondrial creatine kinase activity was increased in hippocampus, prefrontal cortex, cortex, and striatum. Our results indicate that there is energy metabolism dysfunction in the mdx mouse brain. Muscle Nerve 41: 257-260, 2010
Resumo:
Acestrorhynchus is the sole genus of the family Acestrorhynchidae which includes 14 species currently recognized as valid. Species of Acestrorhynchus comprise small-to-medium sized piscivorous fishes and have been traditionally grouped on the basis of well-defined color patterns. A recent phylogeny, based on morphological characters, could not resolve the phylogenetic affinities of A. heterolepis and the relationships among the species of the clade formed by A. abbreviatus, A. altus, A. falcatus, A. lacustris, and A. pantaneiro. The simultaneous analysis of two mitochondrial genes (16S and ATP synthase subunits 6 and 8) and one nuclear intron (S7) was able to resolve the latter clade, but the position of A. heterolepis remained unresolved. The combination of the molecular and morphological data sets in a total evidence analysis resulted in a well-resolved hypothesis regarding the phylogenetic relationships of Acestrorhynchus species. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Phylogenetic analyses of chloroplast DNA sequences, morphology, and combined data have provided consistent support for many of the major branches within the angiosperm, clade Dipsacales. Here we use sequences from three mitochondrial loci to test the existing broad scale phylogeny and in an attempt to resolve several relationships that have remained uncertain. Parsimony, maximum likelihood, and Bayesian analyses of a combined mitochondrial data set recover trees broadly consistent with previous studies, although resolution and support are lower than in the largest chloroplast analyses. Combining chloroplast and mitochondrial data results in a generally well-resolved and very strongly supported topology but the previously recognized problem areas remain. To investigate why these relationships have been difficult to resolve we conducted a series of experiments using different data partitions and heterogeneous substitution models. Usually more complex modeling schemes are favored regardless of the partitions recognized but model choice had little effect on topology or support values. In contrast there are consistent but weakly supported differences in the topologies recovered from coding and non-coding matrices. These conflicts directly correspond to relationships that were poorly resolved in analyses of the full combined chloroplast-mitochondrial data set. We suggest incongruent signal has contributed to our inability to confidently resolve these problem areas. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The effect of unbound palmitic acid (PA) at plasma physiological concentration range on reactive oxygen species (ROS) production by cultured rat skeletal muscle cells was investigated. The participation of the main sites of ROS production was also examined. Production of ROS was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. PA increased ROS production after 1 h incubation. A xanthine oxidase inhibitor did not change PA-induced ROS production. However, the treatment with a mitochondrial uncoupler and mitochondrial complex III inhibitor decreased superoxide production induced by PA. The importance of mitochondria was also evaluated in 1 h incubated rat soleus and extensor digitorum longus (EDL) muscles. Soleus muscle, which has a greater number of mitochondria than EDL, showed a higher superoxide production induced by PA. These results indicate that mitochondrial electron transport chain is an important contributor for superoxide formation induced by PA in skeletal muscle. Results obtained with etomoxir and bromopalmitate treatment indicate that PA has to be oxidized to raise ROS production. A partial inhibition of superoxide formation induced by PA was observed by treatment with diphenylene iodonium, an inhibitor of NADPH oxidase. The participation of this enzyme complex was confirmed through an increase of p47(phox) phosphorylation after treatment with PA.
Resumo:
Chronic exposure of pancreatic beta-cells to saturated non-esterified fatty acids can lead to inhibition of insulin secretion and apoptosis. Several previous studies have demonstrated that saturated fatty acids such as PA (palmitic acid) are detrimental to beta-cell function compared with unsaturated fatty acids. In the present study, we describe the effect of the polyunsaturated AA (arachidonic acid) on the function of the clonal pancreatic beta-cell line BRIN-BD11 and demonstrate AA-dependent attenuation of PA effects. When added to beta-cell incubations at 100 mu M, AA can stimulate cell proliferation and chronic (24 h) basal insulin secretion. Microarray analysis and/or real-time PCR indicated significant AA-dependent up-regulation of genes involved in proliferation and fatty acid metabolism [e.g. Angptl (angiopoietin-like protein 4), Ech1 (peroxisomal Delta(3.5),Delta(2.4)-dienoyl-CoA isomerase), Cox-1 (cyclo-oxygenase-1) and Cox-2, P < 0.05]. Experiments using specific COX and LOX (lipoxygenase) inhibitors demonstrated the importance of COX-1 activity for acute (20 min) stimulation of insulin secretion, suggesting that AA metabolites may be responsible for the insulinotropic effects. Moreover, concomitant incubation of AA with PA dose-dependently attenuated the detrimental effects of the saturated fatty acid, so reducing apoptosis and decreasing parameters of oxidative stress [ROS (reactive oxygen species) and NO levels] while improving the GSH/GSSG ratio. AA decreased the protein expression of iNOS (inducible NO synthase), the p65 subunit of NF-kappa B (nuclear factor kappa B) and the p47 subunit of NADPH oxidase in PA-treated cells. These findings indicate that AA has an important regulatory and protective beta-cell action, which may be beneficial to function and survival in the `lipotoxic` environment commonly associated with Type 2 diabetes mellitus.
Resumo:
The effect of an adventure race (Ecomotion Pr), which lasted for 4-5 days, on neutrophil and lymphocyte death from elite athletes was investigated. Blood was collected from 11 athletes at rest and after the adventure race. The following parameters of cell death were measured in neutrophils and lymphocytes: cell membrane integrity, DNA fragmentation, mitochondrial transmembrane depolarization and reactive oxygen species (ROS) production. Phagocytosis capacity was also evaluated in neutrophils. The adventure race raised the proportion of cells with the loss of membrane integrity; lymphocytes by 14% and neutrophils by 16.4%. The proportion of lymphocytes with DNA fragmentation (2.9-fold) and mitochondrial transmembrane depolarization (1.5-fold) increased. However, these parameters did not change in neutrophils. ROS production remained unchanged in lymphocytes, whereas an increase by 2.2-fold was found in neutrophils due to the race. Despite these changes, the phagocytosis capacity did not change in neutrophils after the race. In conclusion, the Ecomotion Pr race-induced neutrophil death by necrosis (as indicated by the loss of membrane integrity) and led to lymphocyte death by apoptosis (as indicated by increase DNA fragmentation and depolarization of mitochondrial membrane).
Resumo:
Increased plasma levels of free fatty acids (FFA) occur in states of insulin resistance such as obesity and type 2 diabetes mellitus. These high levels of plasma FFA are proposed to play an important role for the development of insulin resistance but the mechanisms involved are still unclear. This study investigated the effects of saturated and unsaturated FFA on insulin sensitivity in parallel with mitochondrial function. C2C12 myotubes were treated for 24 h with 0.1 mM of saturated (palmitic and stearic) and unsaturated (oleic, linoleic, eicosapentaenoic, and docosahexaenoic) FFA. After this period, basal and insulin-stimulated glucose metabolism and mitochondrial function were evaluated. Saturated palmitic and stearic acids decreased insulin-induced glycogen synthesis, glucose oxidation, and lactate production. Basal glucose oxidation was also reduced. Palmitic and stearic acids impaired mitochondrial function as demonstrated by decrease of both mitochondrial hyperpolarization and ATP generation. These FFA also decreased Akt activation by insulin. As opposed to saturated FFA, unsaturated FFA did not impair glucose metabolism and mitochondrial function. Primary cultures of rat skeletal muscle cells exhibited similar responses to saturated FFA as compared to C2C12 cells. These results show that in muscle cells saturated FFA-induced mitochondrial dysfunction associated with impaired insulin-induced glucose metabolism. J. Cell. Physiol. 222: 187-194, 2010. (C) 2009 Wiley-Liss, Inc.
Resumo:
LEVADA-PIRES, A. C., M. F. CURY-BOAVENTURA, R. GORJAO, S. M. HIRABARA. E. F. PUGGINA, I. L. PELLEGRINOTTI, L. A. DOMINGUES FILHO, R. CURI, and T. C. PITHON-CURI. Induction of Lymphocyte Death by Short- and Long-Duration Triathlon Competitions. Med. Sci. Sporty Exerc., Vol. 4 1, No. 10, pp. 1896-1901, 2009. Purpose: The effect of triathlon competitions on death of lymphocytes from elite athletes was investigated. Material and Methods: Blood was collected from sedentary volunteers and triathletes at rest and after a short-duration triathlon (SDT) and after a long-duration triathlon (LDT-half Ironman) competitions. Results: The athletes had lowered lymphocyte proliferation capacity compared with sedentary volunteers either at rest or after the competitions. There was no difference in the parameters associated with lymphocyte death when sedentary volunteers were compared with triathletes at rest. Lymphocytes from triathletes after SDT competition showed an increase in DNA fragmentation, phosphatidylserine externalization, and mitochondrial transmembrane depolarization and did not alter membrane integrity when compared with cells from athletes at rest. In contrast, the LDT competition raised the proportion of lymphocytes with loss of membrane integrity when compared with cells from athletes at rest and did not change the apoptotic parameters. The LDT competition induced an increase of reactive oxygen species (ROS) production by lymphocytes compared with triathletes at rest. The SDT competition did not alter ROS production by lymphocytes when compared with cells from triathletes at rest. ROS production by lymphocytes after LDT competition was 60% higher than in SDT. Conclusions: Evidence is presented herein that an LDT competition caused lymphocyte death by necrosis, whereas an SDT induced lymphocyte apoptosis. The mechanism for lymphocyte death induced by the triathlon competitions may involve an increase in ROS production at different extents.
Resumo:
COQ10 deletion in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q(2). Rescue of respiration by Q(2) is a characteristic of mutants blocked in coenzyme Q(6) synthesis. Unlike Q(6) deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations Of Q(6). The physiological significance of earlier observations that purified Coq10p contains bound Q(6) was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q(2). This suggests that in vivo binding of Q(6) by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains over-producing Coq10p. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The bacterial GatCAB operon for tRNA-dependent amidotransferase (AdT) catalyzes the transamidation of mischarged glutamyl-tRNA(Gln) to glutaminyl-tRNA(Gln). Here we describe the phenotype of temperature-sensitive (ts) mutants of GTF1, a gene proposed to code for subunit F of mitochondrial AdT in Saccharomyces cerevisiae. The ts gtf1 mutants accumulate an electrophoretic variant of the mitochondrially encoded Cox2p subunit of cytochrome oxidase and an unstable form of the Atp8p subunit of the F(1)-F(0) ATP synthase that is degraded, thereby preventing assembly of the F(0) sector. Allotopic expression of recoded ATP8 and COX2 did not significantly improve growth of gtf1 mutants on respiratory substrates. However, ts gft1 mutants are partially rescued by overexpression of PET112 and HER2 that code for the yeast homologues of the catalytic subunits of bacterial AdT. Additionally, B66, a her2 point mutant has a phenotype similar to that of gtf1 mutants. These results provide genetic support for the essentiality, in vivo, of the GatF subunit of the heterotrimeric AdT that catalyzes formation of glutaminyl-tRNA(Gln) (Frechin, M., Senger, B., Braye, M., Kern, D., Martin, R. P., and Becker, H. D. (2009) Genes Dev. 23, 1119-1130).
Resumo:
Mitochondrial diseases are clinically and genetically heterogeneous disorders due to primary mutations in mitochondrial DNA (mtDNA) or nuclear DNA (nDNA). We studied a male infant with severe congenital encephalopathy, peripheral neuropathy, and myopathy. The patient`s lactic acidosis and biochemical defects of respiratory chain complexes I, III, and IV in muscle indicated that he had a mitochondrial disorder while parental consanguinity suggested autosomal recessive inheritance. Cultured fibroblasts from the patient showed a generalized defect of mitochondrial protein synthesis. Fusion of cells from the patient with 143B206 rho(0) cells devoid of mtDNA restored cytochrome c oxidase activity confirming the nDNA origin of the disease. Our studies indicate that the patient has a novel autosomal recessive defect of mitochondrial protein synthesis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The genetic diversity and phylogeographical patterns of Trypanosoma species that infect Brazilian bats were evaluated by examining 1043 bats from 63 species of seven families captured in Amazonia, the Pantanal, Cerrado and the Atlantic Forest biomes of Brazil. The prevalence of trypanosonne-infected bats, as estimated by haemoculture, was 12.9%, resulting in 77 Cultures of isolates, most morphologically identified as Trypanosoma cf. cruzi, classified by barcoding using partial sequences from ssrRNA gene into the subgenus Schizotrypanum and identified as T. cruzi (15), T cruzi marinkellei (37) or T. cf. dionisii (25). Phylogenetic analyses using nuclear ssrRNA, glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) and mitochondrial cytochrome b (Cyt b) gene sequences generated three clades, which clustered together forming the subgenus Schizotrypanum. In addition to vector association, bat trypanosomes were related by the evolutionary history, ecology and phylogeography of the bats. Tryponosoma cf. dionisii trypanosomes (32.4%) infected 12 species from four bat families captured in all biomes, from North to South Brazil, and clustered with T. dionisii from Europe despite being separated by some genetic distance. Trypanosoma cruzi marinkellei (49.3%) was restricted to phyllostomid bats from Amazonia to the Pantanal (North to Central). Trypanosoma cruzi (18.2%) was found mainly in vespertilionid and phyllostomid bats from the Pantanal/Cerrado and the Atlantic Forest (Central to Southeast), with a few isolates from Amazonia. (C) 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The ruthenium compound [Ru(2)Cl(Ibp)(4)] (or RuIbp) has been reported to cause significantly greater inhibition of C6 glioma cell proliferation than the parent HIbp. The present study determined the effects of 0-72 h exposure to RuIbp upon C6 cell cycle distribution, mitochondrial membrane potential, reactive species generation and mRNA and protein expression of E2F1, cyclin D1, c-myc, pRb, p21, p27, p53, Ku70, Ku80, Bax, Bcl2, cyclooxygenase 1 and 2 (COX1 and COX2). The most significant changes in mRNA and protein expression were seen for the cyclin-dependent kinase inhibitors p21 and p27 which were both increased (p<0.05). The marked decrease in mitochondrial membrane potential (p<0.01) and modest increase in apoptosis was accompanied by a decrease in anti-apoptotic Bcl2 expression and an increase in pro-apoptotic Bax expression (p<0.05). Interestingly, COX1 expression was increased in response to a significant loss of prostaglandin E(2) production (p<0.001), most likely due to the intracellular action of Ibp. Future studies will investigate the efficacy of this novel ruthenium-ibuprofen complex in human glioma cell lines in vitro and both rat and human glioma cells growing under orthotopic conditions in vivo. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The present study reports the synthesis of a novel compound with the formula [Ru(2)(aGLA)(4)Cl] according to elemental analyses data, referred to as Ru(2)GLA. The electronic spectra of Ru(2)GLA is typical of a mixed valent diruthenium(II,III) carboxylate. Ru(2)GLA was synthesized with the aim of combining and possibly improving the anti-tumour properties of the two active components ruthenium and gamma-linolenic acid (GLA). The properties of Ru(2)GLA were tested in C6 rat glioma cells by analysing cell number, viability, lipid droplet formation, apoptosis, cell cycle distribution, mitochondrial membrane potential and reactive oxygen species. Ru(2)GLA inhibited cell proliferation in a time and concentration dependent manner. Nile Red staining suggested that Ru(2)GLA enters the cells and ICP-AES elemental analysis found all increase in ruthenium from <0.02 to 425 mg/Kg in treated cells. The sub-G1 apoptotic cell population was increased by Ru(2)GLA (22 +/- 5.2%) when analysed by FACS and this was confirmed by Hoechst staining of nuclei. Mitochondrial membrane potential was decreased in the presence of Ru(2)GLA (44 +/- 2.3%). In contrast, the cells which maintained a high mitochondrial membrane potential had an increase (18 +/- 1.5%) in reactive oxygen species generation. Both decreased mitochondrial membrane potential and increased reactive oxygen species generation may be involved in triggering apoptosis in Ru(2)GLA exposed cells. The EC(50) for Ru(2)GLA decreased with increasing time of exposure from 285 mu M at 24h, 211 mu M at 48 h to 81 mu M at 72 h. In conclusion, Ru(2)GLA is a novel drug with anti proliferative properties in C6 glioma cells and is a potential candidate for novel therapies in gliomas. Copyright (C) 2009 John Wiley & Sons, Ltd.