960 resultados para least common subgraph algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Contabilidade, Fiscalidade e Finanças Empresariais

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La investigación pretende hacer aportes para la reformulación ético-discursiva de las ideas de ciudadanía y bien común, que sea capaz de articular la libertad y la equidad con la corresponsabilidad solidaria en contextos post-neoliberales de globalización, interculturalidad y exclusión. En este sentido, una reconfiguración de la sociedad y de la ciudadanía implicará mostrar en qué sentido y de qué modo el espacio público tiene que estar abierto no sólo a la competencia y a los consumidores, sino a ciudadanos ilustrados, autónomos y críticos. La investigación parte del supuesto que, desde los presupuestos teóricos, conceptuales y metodológicos de la teoría del discurso y de la teoría de la democracia deliberativa es posible reformular un concepto de bien común apto para articular la integración social en contextos de interacción pluralista y conflictiva, como son las democracias actuales. Puede parecer extraño, y no sin razón, que el concepto de bien común pueda ser rehabilitado en el contexto de sociedades pluralistas y democráticas, e incorporada convincentemente en la estructura de una nueva ética cívica. La extrañeza puede ser aún mayor si se piensa que, en la actualidad, la formulación de una nueva ética cívica se ve enfrentada tanto a desafíos internos, estrictamente ético-filosóficos, como externos, provenientes de problemas y conflictos histórico-contextuales y culturales (Michelini, 1998, 2000). Finalmente, es posible que la supuesta extrañeza esté relacionada también con el hecho de que el concepto de bien común sea empleado no sólo de modo ambiguo, sino que, además, haya sido utilizado en prácticas muy diversas: desde la búsqueda filosófica de la ciudad perfecta y del Estado ideal -en la que Platón manifiesta que "las cosas de los amigos deben ser comunes" (Platón, 1974a, V, 424a, 449c; 1974b, 739a-e)-, hasta las múltiples instrumentalizaciones históricas en las que el concepto de bien común se utilizó para articular la religión con el patriotismo o la razón de Estado. En la historia más o menos reciente de muchos países latinoamericanos encontramos, en este respecto, ejemplos trágicos: en nombre de la razón de Estado y del bien común, no pocas veces se ha pretendido mantener el orden establecido o defender una determinada ideología, incluso vulnerando la legitimidad del Estado de Derecho y lesionando normas éticas fundamentales. El objetivo general de la investigación es fundamentar un sustento teórico coherente para una reelaboración de los conceptos de ciudadanía y bien común en vista de una ética pública de la corresponsabilidad solidaria en sociedades democráticas y en contextos de globalización, interculturalidad y exclusión, e indagar acerca de su aplicabilidad a los campos de la práctica política y educativa. Los resultados del proyecto tendrán un impacto no sólo teórico, sino también práctico en el ámbito de las ciencias humanas, particularmente en el ámbito de la filosofía práctica, la ética pública, la política y el sistema educativo. Además, se propone elaborar lineamientos de acción para las instituciones sociales, educativas y políticas locales, regionales y nacionales, ayudar a esclarecer aspectos centrales de una convivencia democrática y pluralista, y contribuir al esclarecimiento de los deberes, de los derechos y de la corresponsabilidad solidaria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El avance en la potencia de cómputo en nuestros días viene dado por la paralelización del procesamiento, dadas las características que disponen las nuevas arquitecturas de hardware. Utilizar convenientemente este hardware impacta en la aceleración de los algoritmos en ejecución (programas). Sin embargo, convertir de forma adecuada el algoritmo en su forma paralela es complejo, y a su vez, esta forma, es específica para cada tipo de hardware paralelo. En la actualidad los procesadores de uso general más comunes son los multicore, procesadores paralelos, también denominados Symmetric Multi-Processors (SMP). Hoy en día es difícil hallar un procesador para computadoras de escritorio que no tengan algún tipo de paralelismo del caracterizado por los SMP, siendo la tendencia de desarrollo, que cada día nos encontremos con procesadores con mayor numero de cores disponibles. Por otro lado, los dispositivos de procesamiento de video (Graphics Processor Units - GPU), a su vez, han ido desarrollando su potencia de cómputo por medio de disponer de múltiples unidades de procesamiento dentro de su composición electrónica, a tal punto que en la actualidad no es difícil encontrar placas de GPU con capacidad de 200 a 400 hilos de procesamiento paralelo. Estos procesadores son muy veloces y específicos para la tarea que fueron desarrollados, principalmente el procesamiento de video. Sin embargo, como este tipo de procesadores tiene muchos puntos en común con el procesamiento científico, estos dispositivos han ido reorientándose con el nombre de General Processing Graphics Processor Unit (GPGPU). A diferencia de los procesadores SMP señalados anteriormente, las GPGPU no son de propósito general y tienen sus complicaciones para uso general debido al límite en la cantidad de memoria que cada placa puede disponer y al tipo de procesamiento paralelo que debe realizar para poder ser productiva su utilización. Los dispositivos de lógica programable, FPGA, son dispositivos capaces de realizar grandes cantidades de operaciones en paralelo, por lo que pueden ser usados para la implementación de algoritmos específicos, aprovechando el paralelismo que estas ofrecen. Su inconveniente viene derivado de la complejidad para la programación y el testing del algoritmo instanciado en el dispositivo. Ante esta diversidad de procesadores paralelos, el objetivo de nuestro trabajo está enfocado en analizar las características especificas que cada uno de estos tienen, y su impacto en la estructura de los algoritmos para que su utilización pueda obtener rendimientos de procesamiento acordes al número de recursos utilizados y combinarlos de forma tal que su complementación sea benéfica. Específicamente, partiendo desde las características del hardware, determinar las propiedades que el algoritmo paralelo debe tener para poder ser acelerado. Las características de los algoritmos paralelos determinará a su vez cuál de estos nuevos tipos de hardware son los mas adecuados para su instanciación. En particular serán tenidos en cuenta el nivel de dependencia de datos, la necesidad de realizar sincronizaciones durante el procesamiento paralelo, el tamaño de datos a procesar y la complejidad de la programación paralela en cada tipo de hardware. Today´s advances in high-performance computing are driven by parallel processing capabilities of available hardware architectures. These architectures enable the acceleration of algorithms when thes ealgorithms are properly parallelized and exploit the specific processing power of the underneath architecture. Most current processors are targeted for general pruposes and integrate several processor cores on a single chip, resulting in what is known as a Symmetric Multiprocessing (SMP) unit. Nowadays even desktop computers make use of multicore processors. Meanwhile, the industry trend is to increase the number of integrated rocessor cores as technology matures. On the other hand, Graphics Processor Units (GPU), originally designed to handle only video processing, have emerged as interesting alternatives to implement algorithm acceleration. Current available GPUs are able to implement from 200 to 400 threads for parallel processing. Scientific computing can be implemented in these hardware thanks to the programability of new GPUs that have been denoted as General Processing Graphics Processor Units (GPGPU).However, GPGPU offer little memory with respect to that available for general-prupose processors; thus, the implementation of algorithms need to be addressed carefully. Finally, Field Programmable Gate Arrays (FPGA) are programmable devices which can implement hardware logic with low latency, high parallelism and deep pipelines. Thes devices can be used to implement specific algorithms that need to run at very high speeds. However, their programmability is harder that software approaches and debugging is typically time-consuming. In this context where several alternatives for speeding up algorithms are available, our work aims at determining the main features of thes architectures and developing the required know-how to accelerate algorithm execution on them. We look at identifying those algorithms that may fit better on a given architecture as well as compleme

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finfish pots have emerged as a “responsible” gear, when used in combination with conservational and technical measures to sustain fisheries. Previous trials in Irish waters have offered no published reported data and so three designs tested in the current study provide new information on this gear. The most successful traps in terms of fish catch were rigid steel framed rectangular pots used to target Conger eel. Although commercial yield was low (0.2 per trap haul), potential existed for a viable pot fishery. Deployment and storage of Norwegian floating pots was conducted with relative ease but performance in the water was poor resulting in loss of gear. Catch returns were notable even though effort was restricted as mega-faunal by-catch was a problem, which lead to ending this trial. From these initial trials it was evident that catch rates were low compared to established Norwegian fisheries (3.6 cod per pot), which resulted in the utilisation of pots, already established in the crustacean fishery, to find species readily accessible to pot capture. Although fished and designed differently, these gears provided an opportunity to establish the benefits of pot fishing to fish quality and to determine the effects on by-catch. The fishing effects of three catching methods (pots, angling and trawl) and the effects of air exposure on the physiological status of a common by-catch, the lesser spotted dogfish Scyliorhinus canícula (L.) were examined using a range of physiological biomarkers (plasma catecholamine, glucose, lactate, muscle pH and muscle lactate). Physiological responses of fish to an emersion stress regime resulted in a significant metabolic disturbance in groups, but may not have weakened the overall health of these fish, as signified in the revival of some metabolites. Plasma glucose and lactate concentrations did not however recovery to baseline levels indicating that to achieve an accurate profile, responses should be determined by a suite of biomarkers. Responses did not demonstrate that samples from the pots were significantly less stressed than for the other two methods; angling and trawling, which are in contrast to many other studies. Employment of finfish potting therefore in Irish waters needs further consideration before further promotion as a more responsible method to supplement or replace established techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Common whelk, Buccinum undatum (L.) is a conspicuous benthic scavenger in Irish waters, and is a valuable fisheries resource in South East Ireland. B. undatum is fished in many parts of its range, and previous studies have shown that certain life history parameters, which vary with location, make this species vulnerable to overexploitation. This makes research into each exploited stock essential to ensure sustainable fisheries management of the species. In 2003, interest in B. undatum as a complementary species in the inshore fishery east of the Inishowen Peninsula, North West Ireland, initiated investigation into fisheries related biological and population aspects of the species in this region. The current study presents estimates of spatial variation and density of the stock, size at age and growth rates, size and age at onset of sexual maturity, and timing of reproductive events in the region of the North West Irish whelk fishery for the period of June 2003 to May 2004. Analysis of variance of the total shell length of whelk landings to the fishery was conducted over spatial scales of fishing pot, fishing string and landings to vessels. Landings varied significantly in shell length at the spatial scale at which whelks are attracted to baited pots, but did not vary significantly over larger spatial scales. Depletion estimates of stock density from fisheries derived Catch per Unit Effort data and a mark re-capture experiment estimate 0.134 - 0.227 whelks per m2. Two independent methods of age determination found similar growth logistics functions for B. undatum.Modal analysis of length frequency distribution of landings to the fishery estimated symptotic length, Leo = 151.64 mm and Brody growth coefficient, K = 0.04. Analysis of the striae in individual opercula, where each stria was found to represent annual growth, estimated Loo = 137.73 mm and K = 0.12. Common whelks in the region of the North West Irish whelk fishery grow slowly and are long-lived, with 19 opercula striae recorded in one individual. Onset of sexual maturity is late, and no sex-specific differences in size or age at maturity were determined in the present study. Males were found to achieve sexual maturity at 83.30 ± 10.77 mm, and 8.9 - 11.1 years of age, and females at 82.62 ± 10.68 mm and 8.8 to 11.1 years of age. Systematic observations of reproductive events, including histological changes to the female ovary and male testis, and changes in the size and mass of body components, suggest that breeding occurred between the autumn and winter months of October and December 2003. Biological aspects of B. undatum in the study region are compared with previous studies from other regions, and discussed in relation to sustainable management of the fishery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is a small contribution to the knowledge of Megalopyge lanata (Stoll, 1780). The caterpillars of this moth are called " Sassurana" and are very known by the fact of having the body densely covered with long hairs, among which are some setae connected with poison glands. They damage the leaves of a large number of plants, enclosed in at least 14 botanical families, being therefore poly-phagous. M. lanata has a great taxonomical importance for it being the type of the family Megalopygidae Berg, 1882. The Author presents some notes on the various common names used for it, on its known natural enemies and also about the biology, according to the observations made by him in the Laboratory of Zoology, of the Escola Superior de Agricultura "Luiz de Queiroz, São Paulo University, Brasil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main wild doves of the region of Piracicaba (State of S. Paulo, Brazil) are Columba cayennensis sylvestris Vieillot, Oreopeleia montana montana (L.), Leptotila verreauxi decipiens Salvadori, Columbigallina talpacoti talpacoti. (Temminck) and Scardafella squammata squammata (Lesson). The last one is well known for the beauty of the coloration of its feathers and for the characteristic sounds produced when flying up. Of common occurrence around the local farms, that species can easily be recognized not only for the mentioned peculiarities as for the voice of the adults, which was translated into the Brazilian onomatopoeia by the expression "fogo-apagou". S. squammata's biology being not well known, the Author presents some notes on its nidification, behaviour of both sexes and of the young birds. The data were gotten in nature and with specimens kept in captivity, where the reproduction took place. In such a situation, the male dove used thin and small wooden shavings to build the nest, an artificial material unknown by him when in nature. This fact may be considered as another proof of the plasticity of the instinctive conduct of birds, not so marked as the one given by SCHIRCH (1931) concerning Synallaxis sp. (Furnariidae), which made use of wire pieces and also barbed wires in confectioning the nest. The copulation was sometimes verified, being preceded by the phenomena well known in other Columbidae species. The nest had its building ready just on the day in which the first egg was laid. As it generally happens amongst doves, the nest was not carefully made - a simple and shallow bowl (diameter = 10 cm), where two entirely white eggs were put.. .. ..(22,5-24,5 x 18,0-19,0 mm). The eclosion took place 14 days after the laying of the last egg. As soon as the young doves (at least the male one) can feed by themselves, they try to produce the characteristic species sounds. "Pararu", a common name oly applied to another species - Claravis godefrida (Temminck) - is reported, which is preferably used by people in this region to call the studied dove. No differences between the coloration of the fathers of the two sexes were observed. The female dove seemed to be a little thinner than the male. In addition, the slight differences between the sounds produced by the male and female are pointed out.