931 resultados para girls and IT
Resumo:
The dibenzyl derivative of poly(3,4-propylenedioxythiophene) (PProDOT-Bz(2)) thin film is deposited onto ITO-coated glass substrate by electropolymerization technique. The electropolymerization of ProDOT-Bz(2) is carried out by a three-electrode electrochemical cell. The cyclic voltammogram shows the redox properties of electrochemically prepared films deposited at different scan rates. The thin films prepared were characterized for its morphological properties to study the homogeniety. Classic six-layer structure of PProDOT-Bz(2) electrochromic device using this material was fabricated and reported for the first and its characterizations such as spectroelectrochemical, switching kinetics, and chronoamperometric studies are performed. The color contrast of the thin film and the device achieved are 64 and 40%, respectively, at lambda(max) (628 nm). The switching time is recorded and the observed values are 5 s from the coloring state to the bleaching state and vice versa. The chronoamperometry shows that the device performed up to 400 cycles, and it is capable of working up to 35 cycles without any degradation. (C) 2014 Wiley Periodicals, Inc.
Structural refinement, optical and electrical properties of Ba1-x Sm-2x/3](Zr0.05Ti0.95)O-3 ceramics
Resumo:
Samarium doped barium zirconate titanate ceramics with general formula Ba1-x Sm-2x/3](Zr0.05Ti0.95)O-3 x = 0, 0.01, 0.02, and 0.03] were prepared by high energy ball milling method. X-ray diffraction patterns and micro-Raman spectroscopy confirmed that these ceramics have a single phase with a tetragonal structure. Rietveld refinement data were employed to model BaO12], SmO12], ZrO6], and TiO6] clusters in the lattice. Scanning electron microscopy shows a reduction in average grain size with the increase of Sm3+ ions into lattice. Temperature-dependent dielectric studies indicate a ferroelectric phase transition and the transition temperature decreases with an increase in Sm3+ ion content. The nature of the transition was investigated by the Curie-Weiss law and it is observed that the diffusivity increases with Sm3+ ion content. The ferroelectric hysteresis loop illustrates that the remnant polarization and coercive field increase with an increase in Sm3+ ions content. Optical properties of the ceramics were studied using ultraviolet-visible diffuse reflectance spectroscopy.
Resumo:
The alpha v beta 3 and alpha v beta 5 integrins, transmembrane glycoprotein receptors, are over-expressed in numerous tumors and in endothelial cells that constitute tumor blood vessels. As this protein selectively binds to the Arg-Gly-Asp (RGD) sequence containing peptides, it is an attractive way to target tumors. Herein we have developed novel formulations for integrin mediated selective gene delivery. These formulations are composed of a novel palmitoylated tetrameric RGD containing scaffold (named RAFT-RGD), cationic gemini cholesterol (GL5) and a natural helper lipid 1,2-dioleoyl-L-alpha-glycero-3-phosphatidylethanolamine (DOPE). We have optimized a co-liposomal formulation to introduce the multivalent RGD-containing macromolecule in GL5: DOPE (GL5D) mixture to produce GL5D-RGD. We have unambiguously shown the selectivity of these formulations towards cancer cells that over express alpha v beta 3 and alpha v beta 5 integrins. Two reporter plasmids, pEGFP-C3 and PGL-3, were employed for the transfection experiments and it was shown that GL5D-RGD Liposomes increased exclusively the transfection in alpha v beta 3 and alpha v beta 5 overexpressing HeLa cells.
Resumo:
MsRbpA is an RNA polymerase (RNAP) binding protein from Mycobacterium smegmatis. According to previous studies, MsRbpA rescues rifampicin-induced transcription inhibition upon binding to the RNAP. Others have shown that RbpA from Mycobacterium tuberculosis (MtbRbpA) is a transcription activator. In this study, we report that both MsRbpA and MtbRbpA activate transcription as well as rescue rifampicin-induced transcription inhibition. Transcription activation is achieved through the increased formation of closed RNAP-promoter complex as well as enhanced rate of conversion of this complex to a stable transcriptionally competent RNAP promoter complex. When a 16 aa peptide fragment (Asp 58 to Lys 73) was deleted from MsRbpA, the resulting protein showed 1000-fold reduced binding with core RNAP. The deletion results in abolition of transcription activation and rescue of transcription from the inhibitory effect of rifampicin. Through alanine scanning of this essential region of MsRbpA, Gly 67, Val 69, Pro 70 and Pro 72 residues are identified to be important for MsRbpA function. Furthermore, we report here that the protein is indispensable for M. smegmatis, and it appears to help the organism grow in the presence of the antibiotic rifampicin.
Resumo:
The partially exfoliated and reduced graphite oxide (PE-RGO) is prepared by low temperature thermal exfoliation of graphite oxide under air atmosphere. A symmetric carbon/carbon supercapacitor is studied in a Na2SO4 aqueous electrolyte. The discharge capacitance is 92 F g(-1), when symmetric cell is cycled between the potential ranges from 0 to 1.6 V. This system demonstrates a stable charge/discharge cycle behavior up to 3000 cycles when the cell is operated at a voltage window of 1.6 V. The utilization ratio of potential window is 90% for this system is attributed to the more negative value of electrodes potential when the cell voltage is set to 0 V. The low-temperature exfoliation approach is convenient for mass production of graphenes at low cost and it can be used as electrode material for energy storage applications. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Gasification is an energy transformation process in which solid fuel undergoes thermochemical conversion to produce gaseous fuel, and the two most important criteria involved in such process to evaluate the performance, economics and sustainability of the technology are: the total available energy (exergy) and the energy conserved (energy efficiency). Current study focuses on the energy and exergy analysis of the oxy-steam gasification and comparing with air gasification to optimize the H-2 yield, efficiency and syngas energy density. Casuarina wood is used as a fuel, and mixture of oxygen and steam in different proportion and amount is used as a gasifying media. The results are analysed with respect to varying equivalence ratio and steam to biomass ratio (SBR). Elemental mass balance technique is employed to ensure the validity of results. First and second law thermodynamic analysis is used towards time evaluation of energy and exergy analysis. Different component of energy input and output has been studied carefully to understand the influence of varying SBR on the availability of energy and irreversibility in the system to minimize the losses with change in input parameters for optimum performance. The energy and exergy losses (irreversibility) for oxy-steam gasification system are compared with the results of air gasification, and losses are found to be lower in oxy-steam thermal conversion; which has been argued and reasoned due to the presence of N-2 in the air-gasification. The maximum exergy efficiency of 85% with energy efficiency of 82% is achieved at SBR of 0.75 on the molar basis. It has been observed that increase in SBR results in lower exergy and energy efficiency, and it is argued to be due to the high energy input in steam generation and subsequent losses in the form of physical exergy of steam in the product gas, which alone accounts for over 18% in exergy input and 8.5% in exergy of product gas at SBR of 2.7. Carbon boundary point (CBP), is identified at the SBR of 1.5, and water gas shift (WGS) reaction plays a crucial role in H-2 enrichment after carbon boundary point (CBP) is reached. Effects of SBR and CBP on the H-2/CO ratio is analysed and discussed from the perspective of energy as well as the reaction chemistry. Energy density of syngas and energy efficiency is favoured at lower SBR but higher SBR favours H-2 rich gas at the expense of efficiency. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
The preparation of semisolid slurry of A356 aluminum alloy using an oblique plate was investigated. A356 alloy melt undergoes partial solidification when it flows down on an oblique plate cooled from underneath by counter flowing water. It results in continuous formation of columnar dendrites on plate wall. Due to forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously to produce semisolid slurry at plate exit. Melt pouring temperature provides required condition of solidification whereas plate inclination enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained was solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets were heat treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets were analyzed. Effects of melt pouring temperature and plate inclination on solidification and microstructure of billets produced using oblique plate were described. The investigations involved four different melt pouring temperatures (620, 625, 630 and 635 degrees C) associated with four different plate inclinations (30 degrees, 45 degrees, 60 degrees and 75 degrees). Melt pouring temperature of 625 degrees C with plate inclination of 60 degrees shows fine and globular microstructures and it is the optimum.
Resumo:
Milling is an energy intensive process and it is considered as one of the most energy inefficient processes. Electrical and mechanical shock loading can be used to develop a pre-treatment methodology to enhance energy efficiency of comminution and liberation of minerals. Coal and Banded Hematite Jasper (BHJ) Iron ores samples were taken for the study to know the effect of shock loading. These samples were exposed to 5 electric shocks of 300 kV using an electric shock loading device. A diaphragmless shock tube was used to produce 3 and 6 compressed air shocks of Mach number 2.12 to treat the coal and Iron ore samples. Microscopic, comminution and liberation studies were carried out to compare the effectiveness of these approaches. It was found that electric shock loading can comminute the coal samples more effectively and increases the yield of carbon by 40% at 1.6 gm/cc density over the untreated coal samples. Mechanical shock loading showed improved milling performance for both the materials and 12.90% and 8.1% reduction in the D-80 of the particles was observed during grinding for treated samples of coal and iron, respectively. Liberation of minerals in BHJ Iron ore was found unaffected due to low intensity of the mechanical shock waves and non conductivity of minerals. Compressed air based shock loading is easier to operate than electrical shock loading and it needs to be explored further to improve the energy efficacy of comminution. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Robotic surgical tools used in minimally invasive surgeries (MIS) require miniaturized and reliable actuators for precise positioning and control of the end-effector. Miniature pneumatic artificial muscles (MPAMs) are a good choice due to their inert nature, high force to weight ratio, and fast actuation. In this paper, we present the development of miniaturized braided pneumatic muscles with an outer diameter of similar to 1.2 mm, a high contraction ratio of about 18%, and capable of providing a pull force in excess of 4 N at a supply pressure of 0.8 MPa. We present the details of the developed experimental setup, experimental data on contraction and force as a function of applied pressure, and characterization of the MPAM. We also present a simple kinematics and experimental data based model of the braided pneumatic muscle and show that the model predicts contraction in length to within 20% of the measured value. Finally, a robust controller for the MPAMs is developed and validated with experiments and it is shown that the MPAMs have a time constant of similar to 10 ms thereby making them suitable for actuating endoscopic and robotic surgical tools.
Resumo:
Iron nanostructures with morphology ranging from discrete nanoparticles to nearly monodisperse hierarchical nanostructures have been successfully synthesized using solvated metal atom dispersion (SMAD) method. Such a morphological evolution was realized by tuning the molar ratio of ligand to metal. Surface energy minimization in confluence with strong magnetic interactions and ligand-based stabilization results in the formation of nanospheres of iron. The as-prepared amorphous iron nanostructures exhibit remarkably high coercivity in comparison to the discrete nanoparticles and bulk counterpart. Annealing the as-prepared amorphous Fe nanostructures under anaerobic conditions affords air-stable carbon-encapsulated Fe(0) and Fe3C nanostructures with retention of the morphology. The resulting nanostructures were thoroughly analyzed by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and Raman spectroscopy. TGA brought out that Fe3C nanostructures are more robust toward oxidation than those of a-Fe. Finally, detailed magnetic studies were carried out by superconducting quantum interference device (SQUID) magnetometer and it was found that the magnetic properties remain conserved even upon exposure of the annealed samples to ambient conditions for months.
Resumo:
In this paper, for the first time, we have reported the novel synthesis of reduced graphene oxide (r-GO) dendrite kind of nanomaterial. The proposed r-GO dendrite possesses multifunctional properties in various fields of sensing and separation. The dendrite was synthesized by chemical reaction in different steps. Initially, the r-GO sheet was conjugated with silane group modified magnetic nanoparticle, resulting in nanoparticle decorated r-GO. The above r-GO sheet was further reacted with a new r-GO sheet, resulting in the formation of r-GO dendrite type of structure. Multifunctional behavior of this r-GO dendrite structure was studied by different methods. First, magnetic properties were studied by vibrating sample magnetometer (VSM) and it was found that dendrite structure shows good magnetic susceptibility (180.2 emu/g). The proposed r-GO dendrite also shows a very good antibacterial behavior for Escherichia coli and excellent electrochemical behavior towards ferrocyanide probe molecule. Along with these, it also acts as a substrate for the synthesis of molecularly imprinted polymer for europium metal ion, a lanthanide. The proposed imprinted sensor shows a very high selectivity and sensitivity for europium metal ion (limit of detection= 0.019 mu g L-1) in aqueous as well as real samples. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Nanocrystalline strontium hexaferrites SrFe12-2x (Ni2+-Zr4+)(x)O-19] nanoparticles were successfully synthesized by sal gel process. For densification the powders were sintered at 950 degrees C/4 h. The sintered samples were characterized by X-ray diffraction (XRD), surface area measurement, and field emission scanning electron microscope (FESEM). The lattice parameter a is almost constant but c increased with x upto 0.8 and then decreased. The frequency dependent complex permittivity (epsilon and epsilon `' and permeability (mu' and mu `') and magnetic properties such as saturation magnetization (M-s), coercive field (H-c) were studied. If is observed that saturation magnetization increased gradually from 57.82 emuig to 67.2 emufg as x increased from 0.2 to 0.4 and then decreased from 672 emufg to 31.63 ernufg for x=1.0. In present study, x=0.4 shows high value of M-s 67.2 emu/g. The real part of permittivity (epsilon') remains constant upto a frequency 1 GHz and increases further with an increase of frequency, a resonance and anti resonance peak was observed above 1 GHz for all the samples. In real part of permeability (mu') the relaxation frequency is observed above 1 GHz for all the samples and it is attributed to the domain wall motion. It is well known that the permeability for polycrystalline ferrites can be described as the superposition of two different magnetizing mechanisms: spin rotation and domain wall motion. These low coercive strontium hexaferrites are suitable for magnetic recording applications in hard disks, floppy disks, video tapes, etc. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A new class of exact-repair regenerating codes is constructed by stitching together shorter erasure correction codes, where the stitching pattern can be viewed as block designs. The proposed codes have the help-by-transfer property where the helper nodes simply transfer part of the stored data directly, without performing any computation. This embedded error correction structure makes the decoding process straightforward, and in some cases the complexity is very low. We show that this construction is able to achieve performance better than space-sharing between the minimum storage regenerating codes and the minimum repair-bandwidth regenerating codes, and it is the first class of codes to achieve this performance. In fact, it is shown that the proposed construction can achieve a nontrivial point on the optimal functional-repair tradeoff, and it is asymptotically optimal at high rate, i.e., it asymptotically approaches the minimum storage and the minimum repair-bandwidth simultaneously.
Resumo:
Multiwall carbon nanotubes (MWNTs) were anchored onto graphene oxide sheets (GOs) via diazonium and C-C coupling reactions and characterized by spectroscopic and electron microscopic techniques. The thus synthesized MWNT-GO hybrid was then melt mixed with 50/50 polyamide6-maleic anhydride-modified acrylonitrile-butadiene-styrene (PA6-mABS) blend to design materials with high dielectric constant (30) and low dielectric loss. The phase morphology was studied by SEM and it was observed that the MWNT-GO hybrid was selectively localized in the PA6 phase of the blend. The 30 scales with the concentration of MWNT-GO in the blends, which interestingly showed a very low dielectric loss (< 0.2) making them potential candidate for capacitors. In addition, the dynamic storage modulus scales with the fraction of MWNT-GO in the blends, demonstrating their reinforcing capability as well.
Resumo:
A newly designed fluorescent aluminum(III) complex (L'-Al; 2) of a structurally characterized non-fluorescent rhodamine Schiff base (L) has been isolated in pure form and characterized using spectroscopic and physico-chemical methods with theoretical density functional theory (DFT) support. On addition of Al(III) ions to a solution of L in HEPES buffer (1 mM, pH 7.4; EtOH-water, 1 : 3 v/v) at 25 degrees C, the systematic increase in chelation-enhanced fluorescence (CHEF) enables the detection of Al(III) ions as low as 60 nM with high selectivity, unaffected by the presence of competitive ions. Interestingly, the Al(III) complex (L'-Al; 2) is specifically able to detect fluoride ions by quenching the fluorescence in the presence of large amounts of other anions in the HEPES buffer (1 mM, pH 7.4) at 25 degrees C. On the basis of our experimental and theoretical findings, the addition of Al3+ ions to a solution of L helps to generate a new fluorescence peak at 590 nm, due to the selective binding of Al3+ ions with L in a 1 : 1 ratio with a binding constant (K) of 8.13 x 10(4) M-1. The Schiff base L shows no cytotoxic effect, and it can therefore be employed for determining the intracellular concentration of Al3+ and F-ions by 2 in living cells using fluorescence microscopy.