934 resultados para food powder properties


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formulated food systems are becoming more sophisticated as demand grows for the design of structural and nutritional profiles targeted at increasingly specific demographics. Milk protein is an important bio- and techno-functional component of such formulations, which include infant formula, sports supplements, clinical beverages and elderly nutrition products. This thesis outlines research into ingredients that are key to the development of these products, namely milk protein concentrate (MPC), milk protein isolate (MPI), micellar casein concentrate (MCC), β-casein concentrate (BCC) and serum protein concentrate (SPC). MPC powders ranging from 37 to 90% protein (solids basis) were studied for properties of relevance to handling and storage of powders, powder solubilisation and thermal processing of reconstituted MPCs. MPC powders with ≥80% protein were found to have very poor flowability and high compressibility; in addition, these high-protein MPCs exhibited poor wetting and dispersion characteristics during rehydration in water. Heat stability studies on unconcentrated (3.5%, 140°C) and concentrated (8.5%, 120°C) MPC suspensions, showed that suspensions prepared from high-protein MPCs coagulated much more rapidly than lower protein MPCs. β-casein ingredients were developed using membrane processing. Enrichment of β-casein from skim milk was performed at laboratory-scale using ‘cold’ microfiltration (MF) at <4°C with either 1000 kDa molecular weight cut-off or 0.1 µm pore-size membranes. At pilot-scale, a second ‘warm’ MF step at 26°C was incorporated for selective purification of micellised β-casein from whey proteins; using this approach, BCCs with β-casein purity of up to 80% (protein basis) were prepared, with the whey protein purity of the SPC co-product reaching ~90%. The BCC ingredient could prevent supersaturated solutions of calcium phosphate (CaP) from precipitating, although the amorphous CaP formed created large micelles that were less thermo-reversible than those in CaP-free systems. Another co-product of BCC manufacture, MCC powder, was shown to have superior rehydration characteristics compared to traditional MCCs. The findings presented in this thesis constitute a significant advance in the research of milk protein ingredients, in terms of optimising their preparation by membrane filtration, preventing their destabilisation during processing and facilitating their effective incorporation into nutritional formulations designed for consumers of a specific age, lifestyle or health status

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cheddar cheese was made using control culture (Lactococcus lactis subsp. lactis), or with control culture plus a galactose-metabolising (Gal+) or galactose-non-metabolising (Gal-) Streptococcus thermophilus adjunct; for each culture type, the pH at whey drainage was either low (pH 6.15) or high (pH 6.45). Sc. thermophilus affected the levels of residual lactose and galactose, and the volatile compound profile and sensory properties of the mature cheese (270 d) to an extent dependent on the drain pH and phenotype (Gal+ or Gal-). For all culture systems, reducing drain pH resulted in lower levels of moisture and lactic acid, a higher concentration of free amino acids, and higher firmness. The results indicate that Sc. thermophilus may be used to diversify the sensory properties of Cheddar cheese, for example from a fruity buttery odour and creamy flavour to a more acid taste, rancid odour, and a sweaty cheese flavour at high drain pH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to study the convective drying of anchovy (Engraulis anchoita) fillets and to evaluate the final product characteristics through its biochemical and functional properties. The drying temperatures were of 50, 60 and 70°C, and the fillet samples were dried with the skins down (with air flow one or the two sides) and skins up (with air flow one side). The drying experimental data were analyzed by Henderson–Pabis model, which showed a good fit (R2 > 0.99 and REQM < 0.05). The moisture effective diffusivity values ranged from 4.1 10–10 to 8.6 10–10 m2 s−1 with the skin down and 2.2 10–10 to 5.5 10–10 m2 s−1 with the skin up, and the activation energy values were 32.2 and 38.4 kJ mol−1, respectively. The product characteristics were significantly affected (p < 0.05) by drying operation conditions. The lower change was in drying at 60°C with air flow for two sides of the samples and skin up. In this condition, the product showed solubility 22.3%; in vitro digestibility 87.4%; contents of available lysine and methionine 7.21 and 2.64 g 100 g−1, respectively; TBA value 1.16 mgMDA kg−1; specific antioxidant activity was 1.91 mMDPPH g−1 min−1, and variation total color was 10.72.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermodynamic properties of anchovy fillets and enzymatic modified pastes in two hydrolysis degrees (3% HD and 14% HD), at 50, 60 and 70 C were evaluated. The GAB model was used to calculate the values of the monolayer moisture content and the thermodynamic properties of the samples. The enzymatic modification led to the increases of the superficial area and differential enthalpies, and decrease of the differential entropies in relation the samples in natura. The enthalpy–entropy compensation showed that the process was controlled by the enthalpy, it was only spontaneous for the samples in natura. Pore size decreased with enzymatic modification, and all samples were in the limit of region between micropores and mesopores (<2 nm) for moisture content of 15%, and mesopores (from 2 to 50 nm) to moisture content above 15%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of this study was to develop rice starch (RS), ι-carrageenan (ι-car) based film. Different formulations of RS (1-4%, w/w), ι-car (0.5-2%, w/w) was blended with stearic acid (SA; 0.3-0.9%, w/w) and glycerol (1%, w/w) as a plasticizer. The effect of film ingredients on the thickness, water vapour permeability (WVP), film solubility (FS), moisture content (MC), colour, film opacity (FO), tensile strength (TS), elongation-at-break (EAB) of film was examined. Interactions and miscibility of partaking components was studied by using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Hydrocolloid suspension solution of mix polysaccharides imparted a significant impact (p<0.05) on the important attributes of resulting edible film. TS and EAB of film were improved significantly (p<0.05) when ι-car was increased in the film matrix. Formulation F1 comprising 2% ι-car, 2% 33 RS, 0.3% SA, Gly 30% w/w and 0.2% surfactant (tween®20) provided film with good 34 physical, mechanical and barrier properties. FT-IR and XRD results reveal that molecular interactions between RS-ι-car have a great impact on the film properties confining the compatibility and miscibility of mixed polysaccharide. Results of the study offers new biodegradable formulation for application on fruit and vegetables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta dissertação é composta por 5 artigos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of different solvents on the recovery of (i) extractable solids (ES), (ii) total phenolic compounds (TPC), (iii) total flavonoid content (TFC), (iv) vitamin C, and (v) antioxidant activity from lemon pomace waste were investigated. The results revealed that solvents significantly affected the recovery of ES, TPC, TFC, and antioxidant properties. Absolute methanol and 50% acetone resulted in the highest extraction yields of TPC, whereas absolute methanol resulted in the highest extraction of TFC, and water had the highest recovery of vitamin C. 50% ethanol, and 50% acetone had higher extraction yields for TPC, and TFC, as well as higher antioxidant activity compared with their absolute solvents and water. TPC and TFC were shown to be the major components contributing to the antioxidant activity of lemon pomace.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microalgae have a wide range of application fields, from food to fuels, to pharmaceuticals & fine chemicals, aquaculture and environmental bioremediation, among others. Spirulina and Chlorella have been used as food sources since ancient times, due to their high and balanced nutritional value. Our research group in Lisbon has developed a range of food products (emulsions, gelled desserts, biscuits and pastas) enriched with freshwater and marine microalgae (Spirulina, Chlorella, Haematococcus, Isochrysis and Diacronema). The developed products presented attractive and stable colours, high resistance to oxidation and enhanced rheological properties. Some of these products will be prepared at the Post-Congress Course “Functional Foods Development” at the University of Antofagasta. More recently, a great interest has arisen on using microalgae for biofuel production. The same group has also been exploring several marine and freshwater species for biofuel production (e.g., biodiesel, bioethanol, biohydrogen and biomethane) within a biorefinery approach, in order to obtain high and low-value co-products using integral biomass maximizing the energy revenue. Namely, supercritical fluid extraction of Nannochloropsis sp. allowed the recovery of valuable carotenoids and lipids, prior to bioH2 production through dark fermentation of the residual biomass. Also, Scenedesmus obliquus residues after sugars (for bioethanol) and lipids (for biodiesel) extraction has been anaerobically digested attaining high biomethane yields. Regarding sustainability issues, the current trend of our group is now focused on using liquid effluents and high CO2 levels for low cost microalgae growth, contributing to a lower water demand, primary energy consumption and global warming potential by reducing the need for potable water and fertilizers (P, N) and increasing CO2 mitigation. Microalgae biomass has been successfully used for urban wastewater treatment with subsequent bioH2 production, in a biorefinery approach. Presently, ammonium-rich raw effluents from piggeries and poultry industry are being effectively used for microalgae growth avoiding any pre-treatment step.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Great interest is raising in food intolerances due to the lack, in many cases, of a particular sensitizing agent. Objective: We investigated the serum level of possible new haptens in 15 heavy meat consumers for sport fitness affected by various kinds of food intolerance and who had ever been administered antibiotics in their life for clinical problems. Methods: Forty ml of blood were drawn from each patient and analyzed, by means of an ELISA test, in order to possibly identify the presence of an undue contaminant with hapten properties. Results: Four out of fifteen subjects (26%) showed a serum oxytetracycline amount > 6 ng/g (which is considered the safety limit), 10 of 15 (66%) a serum doxycycline amount > of 6 ng/g and 3 out of 15 (30%) subjects had high serum level of both molecules. Conclusions: Although a direct ratio between body antibiotics remnant storage in the long run and chronic gut dysfunctions and/or food allergy did not reached the evidence yet, the blood traces of these compounds in a food intolerant otherwise healthy population might be considered the preliminary putative step of a sensitizing pathway. Our next goals foresee a deeper insight into the sensitizing trigger from human chronic antibiotic exposure via the zootechnical delivery of poultry food.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to evaluate the chemical, color, textural, and sensorial characteristics of Serra da Estrela cheese and also to identity the factors affecting these properties, namely thistle ecotype, place of production, dairy and maturation. The results demon- strated that the cheeses lost weight mostly during the first stage of maturation, which was negatively correlated with moisture content, being this also observed for fat and protein contents. During maturation the cheeses became darker and with a yellowish coloration. A strong corre- lation was found between ash and chlorides contents, being the last directly related to the added salt in the manufacturing process. The flesh firmness showed a strong positive correlation with the rind harness and the firmness of inner paste. Stickiness was strongly related with all the other textural properties being indicative of the creamy nature of the paste. Adhesiveness was posi- tively correlated with moisture content and negatively correlated with maturation time. The trained panelists liked the cheeses, giving high overall assessment scores, but these were not significantly correlated with the physicochemical properties. The salt differences between cheeses were not evident for the panelists, which was corroborated by the absence of correlation between the perception of saltiness and the analyzed chlorides con- tents. The Factorial Analysis of the chemical and physical properties evidenced that they could be explained by two factors, one associated to the texture and the color and the other associated with the chemical properties. Finally, there was a clear influence of the thistle ecotype, place of production and dairy factors in the analyzed properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, magnesium is alloyed with varying amounts of the ferromagnetic alloying element cobalt in order to obtain lightweight load-sensitive materials with sensory properties which allow an online-monitoring of mechanical forces applied to components made from Mg-Co alloys. An optimized casting process with the use of extruded Mg-Co powder rods is utilized which enables the production of magnetic magnesium alloys with a reproducible Co concentration. The efficiency of the casting process is confirmed by SEM analyses. Microstructures and Co-rich precipitations of various Mg-Co alloys are investigated by means of EDS and XRD analyses. The Mg-Co alloys' mechanical strengths are determined by tensile tests. Magnetic properties of the Mg-Co sensor alloys depending on the cobalt content and the acting mechanical load are measured utilizing the harmonic analysis of eddy-current signals. Within the scope of this work, the influence of the element cobalt on magnesium is investigated in detail and an optimal cobalt concentration is defined based on the performed examinations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic nanoparticles (MNPs) are known for the unique properties conferred by their small size and have found wide application in food safety analyses. However, their high surface energy and strong magnetization often lead to aggregation, compromising their functions. In this study, iron oxide magnetic particles (MPs) over the range of nano to micro size were synthesized, from which particles with less aggregation and excellent magnetic properties were obtained. MPs were synthesized via three different hydrothermal procedures, using poly (acrylic acid) (PAA) of different molecular weight (Mw) as the stabilizer. The particle size, morphology, and magnetic properties of the MPs from these synthesis procedures were characterized and compared. Among the three syntheses, one-step hydrothermal synthesis demonstrated the highest yield and most efficient magnetic collection of the resulting PAA-coated magnetic microparticles (PAA-MMPs, >100 nm). Iron oxide content of these PAA-MMPs was around 90%, and the saturation magnetization ranged from 70.3 emu/g to 57.0 emu/g, depending on the Mw of PAA used. In this approach, the particles prepared using PAA with Mw of 100K g/mol exhibited super-paramagnetic behavior with ~65% lower coercivity and remanence compared to others. They were therefore less susceptible to aggregation and remained remarkably water-dispersible even after one-month storage. Three applications involving PAA-MMPs from one-step hydrothermal synthesis were explored: food proteins and enzymes immobilization, antibody conjugation for pathogen capture, and magnetic hydrogel film fabrication. These studies demonstrated their versatile functions as well as their potential applications in the food science area.