863 resultados para fine motor skills
Resumo:
Syntheses of protein molecules in a cell are carried out by ribosomes.A ribosome can be regarded as a molecular motor which utilizes the input chemical energy to move on a messenger RNA (mRNA) track that also serves as a template for the polymerization of the corresponding protein. The forward movement, however, is characterized by an alternating sequence of translocation and pause. Using a quantitative model, which captures the mechanochemical cycle of an individual ribosome, we derive an exact analytical expression for the distribution of its dwell times at the successive positions on the mRNA track. Inverse of the average dwell time satisfies a Michaelis-Menten-type'' equation and is consistent with the general formula for the average velocity of a molecular motor with an unbranched mechanochemical cycle. Extending this formula appropriately, we also derive the exact force-velocity relation for a ribosome. Often many ribosomes each synthesizes a copy of the same protein. We extend the model of a single ribosome by incorporating steric exclusion of different individuals on the same track. We draw the phase diagram of this model of ribosome traffic in three-dimensional spaces spanned by experimentally controllable parameters. We suggest new experimental tests of our theoretical predictions.
Resumo:
Digital Image
Resumo:
Digital Image
Resumo:
Disorders resulting from degenerative changes in the nervous system are progressive and incurable. Both environmental and inherited factors affect neuron function, and neurodegenerative diseases are often the sum of both factors. The cellular events leading to neuronal death are still mostly unknown. Monogenic diseases can offer a model for studying the mechanisms of neurodegeneration. Neuronal ceroid lipofuscinoses, or NCLs, are a group of monogenic, recessively inherited diseases affecting mostly children. NCLs cause severe and specific loss of neurons in the central nervous system, resulting in the deterioration of motor and mental skills and leading to premature death. In this thesis, the focus has been on two forms of NCL, the infantile NCL (INCL, CLN1) and the Finnish variant of late infantile NCL (vLINCLFin, CLN5). INCL is caused by mutations in the CLN1 gene encoding for the PPT1 (palmitoyl protein thioesterase 1) enzyme. PPT1 removes a palmitate moiety from proteins in experimental conditions, but its substrates in vivo are not known. In the Finnish variant of late infantile NCL (vLINCLFin), the CLN5 gene is defective, but the function of the encoded CLN5 has remained unknown. The aim of this thesis was to elucidate the disease mechanisms of these two NCL diseases by focusing on the molecular interactions of the defective proteins. In this work, the first interaction partner for PPT1, the mitochondrial F1-ATP synthase, was described. This protein has been linked to HDL metabolism in addition to its well-known role in the mitochondrial energy production. The connection between PPT1 and the F1-ATP synthase was studied utilizing the INCL-disease model, the genetically modified Ppt1-deficient mice. The levels of F1-ATP synthase subunits were increased on the surface of Ppt1-deficient neurons when compared to controls. We also detected several changes in lipid metabolism both at the cellular and systemic levels in Ppt1-deficient mice when compared to controls. The interactions between different NCL proteins were also elucidated. We were able to detect novel interactions between CLN5 and other NCL proteins, and to replicate the previously reported interactions. Some of the novel interactions influenced the intracellular trafficking of the proteins. The multiple interactions between CLN5 and other NCL proteins suggest a connection between the NCL subtypes at the cellular level. The main results of this thesis elicit information about the neuronal function of PPT1. The connection between INCL and neuronal lipid metabolism introduces a new perspective to this rather poorly characterized subject. The evidence of the interactions between NCL proteins provides the basis for future research trying to untangle the NCL disease mechanisms and to develop strategies for therapies.
Resumo:
1. Under the Terms of Reference for the Committee’s Inquiry, ‘lemons’ are defined as ‘new motor vehicles with numerous, severe defects that re-occur despite multiple repair attempts or where defects have caused a new motor vehicle to be out of service for a prolonged period of time’. Consumers are currently protected in relation to lemon purchases by the Australian Consumer Law (ACL) located in Schedule 2 of the Competition and Consumer Act 2010 (Cth) (CCA). The ACL applies as a law of Queensland pursuant to the Fair Trading Act 1989 (Qld). The voluntary recall and consumer guarantees law took effect on 1 January 2011. 2. In 2006, the Government of Victoria made a commitment to introduce a lemon law into the provisions of the then Fair Trading Act 1999 (Vic). The public consultation process on the proposal to introduce a lemon law for motor vehicle purchases in Victoria was conducted by Ms Janice Munt MP, with the assistance of Consumer Affairs Victoria (CAV). CAV released an Issues Paper to canvas with industry and the community options for the development and introduction of a motor vehicle lemon law.(Consumer Affairs Victoria, Introducing Victorian motor vehicle lemon laws, Issues Paper, (September, 2007). 3. A CAV report prepared by Janice Munt MP was released in July, 2008 (Consumer Affairs Victoria, Motor Cars: A report on the motor vehicle lemon law consultations (July 2008) (Victorian Lemon Law Report). However, the Victorian proposal was overtaken by events leading to the adoption of a uniform consumer protection law in all Australian jurisdictions, the ACL. 4. The structure of this submission is to consider first the three different bases upon which consumers can obtain relief for economic loss arising from defects in motor vehicles. The second part of the submission considers the difficulties encountered by consumers in litigating motor vehicle disputes in the courts and tribunals. The third part of the submission examines the approach taken in other jurisdictions to resolving motor vehicle disputes. The final part of the submission considers a number of possible reforms that could be made to the existing law and its enforcement to reduce consumer detriment arising from the purchase of ‘lemon’ motor vehicles. 5. There are three principal bases upon which a consumer can obtain redress for defects in new motor vehicles under the ACL. The first is where the manufacturer admits liability and initiates the voluntary recall procedure provided for in s 128 of the ACL. Under this basis the manufacturer generally repairs or replaces the part subject to the recall free of charge. The second basis is where the manufacturer or dealer denies liability and the consumer is initiates proceedings in the court or tribunal seeking a statutory remedy under the ACL, the nature of which will depend on whether the failure to comply with the consumer guarantee was major or not. The third basis upon which a consumer can obtain redress is pursuant to public enforcement by the ACCC. Each basis will be considered in this part. What all three bases have in common is the need to conduct an investigation to identify the nature of the defect and how it arose.
Resumo:
The oxidation of sodium sulphide in the presence of fine activated carbon particles (4.33 μm) has been studied at 75°C in a foam bed contactor. The existing single-stage model of a foam bed reactor has been modified to take into account the effect of heterogeneous catalyst particles and the absorption in the storage section. The variables studied are catalyst loading, initial sulphide concentration and the average liquid hold-up in the foam bed. It is seen that the rates of oxidation of sodium sulphide are considerably enhanced by an increase in the loading of activated carbon particles. The rate of conversion of sodium sulphide also increases with an increase in the average liquid hold-up in the foam. The modified model predicts these effects fairly well. The contribution of reaction in the storage section is found to be less than 2% of the overall rate of conversion in the contactor.
Resumo:
A new technique for reducing the torque pulsations in a conventional current source inverter fed induction motor drive is presented. This does not attempt to improve the current waveforms, but modifies the airgap MMF directly. This is based on the use of a motor with two sets of balanced phase windings, with a 30 electrical degree phase difference between them, and each set being fed from a conventional current source inverter. The two inverters are further connected in series so that they can operate from the same current source. As a consequence of this arrangement, the voltage rating of the components of each inverter is reduced, along with reduced torque ripple. This scheme has been experimentally verified and compared with the performance of a conventional scheme.
Resumo:
This paper describes the method of field orientation of the stator current vector with respect to the stator, mutual, and rotor flux vectors, for the control of an induction motor fed from a current source inverter (CSI). A control scheme using this principle is described for orienting the stator current with respect to the rotor flux, as this gives natural decoupling between the current coordinates. A dedicated microcomputer system developed for implementing this scheme has been described. The experimental results are also presented.
Resumo:
Relatively few previous studies of individuals receiving a diagnosis of Motor Neurone Disease within the UK health care system have employed qualitative approaches to examine the diagnostic journey from a patient perspective. A qualitative sociological study was undertaken, involving interviews with 42 participants diagnosed with MND, to provide insight into their experiences of undergoing testing and receiving a diagnosis. Adopting a sociological-phenomenological perspective, this article examines key themes that emerged from participant accounts surrounding the lived experience of the diagnostic journey. The key themes that emerged were: The diagnostic quest; living with uncertainty; hearing bad news; communication difficulties; and a reified body of medical interest. In general, doctor-patient communication both at pre and post diagnosis was experienced as highly stressful, distressing and profoundly upsetting. Participants reported such distress as being due to the mode of delivery and communication strategies used by health professionals. We therefore suggest that professional training needs to emphasize the importance to health professionals of fostering greater levels of tact, sensitivity and empathy towards patients diagnosed with devastating, life-limiting illnesses such as MND.
Resumo:
Despite international protection of white sharks Carcharodon carcharias, important conservation parameters such as abundance, population structure and genetic diversity are largely unknown. The tissue of 97 predominately juvenile white sharks sampled from spatially distant eastern and southwestern Australian coastlines was sequenced for the mitochondrial DNA (mtDNA) control region and genotyped with 6 nuclear-encoded microsatellite loci. MtDNA population structure was found between the eastern and southwestern coasts (F-ST = 0.142, p < 0.0001), implying female reproductive philopatry. This concurs with recent satellite and acoustic tracking findings which suggest the sustained presence of discrete east coast nursery areas. Furthermore, population subdivision was found between the same regions with biparentally inherited micro satellite markers (F-ST = 0.009, p < 0.05), suggesting that males may also exhibit some degree of reproductive philopatry; 5 sharks captured along the east coast had mtDNA haplotypes that resembled western Indian Ocean sharks more closely than Australian/New Zealand sharks, suggesting that transoceanic dispersal, or migration resulting in breeding, may occur sporadically. Our most robust estimate of contemporary genetic effective population size was low and close to thresholds at which adaptive potential may be lost. For a variety of reasons, these contemporary estimates were at least 1, possibly 2, orders of magnitude below our historical effective size estimates. Population decline could expose these genetically isolated populations to detrimental genetic effects. Regional Australian white shark conservation management units should be implemented until genetic population structure, size and diversity can be investigated in more detail.
Resumo:
- Objectives To develop and test a valid and reliable assessment of wheelchair skills for individuals with spinal cord injuries (SCI); the Queensland Evaluation of Wheelchair Skills (QEWS). - Setting Hospital, Australia. - Methods Phase 1: Four Delphi panel rounds with clinical experts were used to develop the QEWS. Phase 2: Intra-rater and inter-rater reliability of the QEWS items were examined in 100 people with SCI. Phase 3a: Concurrent validity was investigated by examining the association between QEWS total scores and physiotherapists’ global ratings of wheelchair skill performance. Phase 3b: Construct validity was tested in 20 people with recent SCI by examining change in QEWS total scores between when they first mobilised in a wheelchair and scores obtained 10 weeks later. - Results Phase 1: The QEWS was developed. Phase 2: The intra-class correlation coefficients reflecting the intra-rater reliability and the inter-rater reliability for the QEWS total score were 1.00 and 0.98, with scores being within one point of each other 96 and 91% of the time, respectively. Phase 3a: The QEWS total scores were comparable with the global rating of wheelchair skill performance (r2=0.93). Phase 3b: The QEWS scores changed by a median (interquartile range (IQR)) of 4 (1 to 6) points over the 10-week period following first wheelchair mobilisation. - Conclusion The QEWS is a valid and reliable tool for measuring wheelchair skills in individuals with SCI. The QEWS is efficient and practical to administer and does not require specialised equipment.
Resumo:
The current state of the practice in Blackspot Identification (BSI) utilizes safety performance functions based on total crash counts to identify transport system sites with potentially high crash risk. This paper postulates that total crash count variation over a transport network is a result of multiple distinct crash generating processes including geometric characteristics of the road, spatial features of the surrounding environment, and driver behaviour factors. However, these multiple sources are ignored in current modelling methodologies in both trying to explain or predict crash frequencies across sites. Instead, current practice employs models that imply that a single underlying crash generating process exists. The model mis-specification may lead to correlating crashes with the incorrect sources of contributing factors (e.g. concluding a crash is predominately caused by a geometric feature when it is a behavioural issue), which may ultimately lead to inefficient use of public funds and misidentification of true blackspots. This study aims to propose a latent class model consistent with a multiple crash process theory, and to investigate the influence this model has on correctly identifying crash blackspots. We first present the theoretical and corresponding methodological approach in which a Bayesian Latent Class (BLC) model is estimated assuming that crashes arise from two distinct risk generating processes including engineering and unobserved spatial factors. The Bayesian model is used to incorporate prior information about the contribution of each underlying process to the total crash count. The methodology is applied to the state-controlled roads in Queensland, Australia and the results are compared to an Empirical Bayesian Negative Binomial (EB-NB) model. A comparison of goodness of fit measures illustrates significantly improved performance of the proposed model compared to the NB model. The detection of blackspots was also improved when compared to the EB-NB model. In addition, modelling crashes as the result of two fundamentally separate underlying processes reveals more detailed information about unobserved crash causes.
Resumo:
Key message We detected seven QTLs for 100-grain weight in sorghum using an F 2 population, and delimited qGW1 to a 101-kb region on the short arm of chromosome 1, which contained 13 putative genes. Abstract Sorghum is one of the most important cereal crops. Breeding high-yielding sorghum varieties will have a profound impact on global food security. Grain weight is an important component of grain yield. It is a quantitative trait controlled by multiple quantitative trait loci (QTLs); however, the genetic basis of grain weight in sorghum is not well understood. In the present study, using an F2 population derived from a cross between the grain sorghum variety SA2313 (Sorghum bicolor) and the Sudan-grass variety Hiro-1 (S. bicolor), we detected seven QTLs for 100-grain weight. One of them, qGW1, was detected consistently over 2 years and contributed between 20 and 40 % of the phenotypic variation across multiple genetic backgrounds. Using extreme recombinants from a fine-mapping F3 population, we delimited qGW1 to a 101-kb region on the short arm of chromosome 1, containing 13 predicted gene models, one of which was found to be under purifying selection during domestication. However, none of the grain size candidate genes shared sequence similarity with previously cloned grain weight-related genes from rice. This study will facilitate isolation of the gene underlying qGW1 and advance our understanding of the regulatory mechanisms of grain weight. SSR markers linked to the qGW1 locus can be used for improving sorghum grain yield through marker-assisted selection.
Resumo:
This paper is concerned with the degree to which the graduate skills required by industry are developed in Australian universities. Despite acknowledgement of the need to increase the graduate skills of students, it would seem that the stated intentions of Australian universities in this respect do not yet meet the expectations of industry. The development of an enterprise program at the University of Tasmania provides by way of example, support that the development of industry-desired skills is possible alongside the desirable knowledge outcomes of a university. It is argued that lecturers and students must give and accept more responsibility for learning to enable the development of desirable graduate skills.
Resumo:
Much of our understanding and management of ecological processes requires knowledge of the distribution and abundance of species. Reliable abundance or density estimates are essential for managing both threatened and invasive populations, yet are often challenging to obtain. Recent and emerging technological advances, particularly in unmanned aerial vehicles (UAVs), provide exciting opportunities to overcome these challenges in ecological surveillance. UAVs can provide automated, cost-effective surveillance and offer repeat surveys for pest incursions at an invasion front. They can capitalise on manoeuvrability and advanced imagery options to detect species that are cryptic due to behaviour, life-history or inaccessible habitat. UAVs may also cause less disturbance, in magnitude and duration, for sensitive fauna than other survey methods such as transect counting by humans or sniffer dogs. The surveillance approach depends upon the particular ecological context and the objective. For example, animal, plant and microbial target species differ in their movement, spread and observability. Lag-times may exist between a pest species presence at a site and its detectability, prompting a need for repeat surveys. Operationally, however, the frequency and coverage of UAV surveys may be limited by financial and other constraints, leading to errors in estimating species occurrence or density. We use simulation modelling to investigate how movement ecology should influence fine-scale decisions regarding ecological surveillance using UAVs. Movement and dispersal parameter choices allow contrasts between locally mobile but slow-dispersing populations, and species that are locally more static but invasive at the landscape scale. We find that low and slow UAV flights may offer the best monitoring strategy to predict local population densities in transects, but that the consequent reduction in overall area sampled may sacrifice the ability to reliably predict regional population density. Alternative flight plans may perform better, but this is also dependent on movement ecology and the magnitude of relative detection errors for different flight choices. Simulated investigations such as this will become increasingly useful to reveal how spatio-temporal extent and resolution of UAV monitoring should be adjusted to reduce observation errors and thus provide better population estimates, maximising the efficacy and efficiency of unmanned aerial surveys.