972 resultados para energy harvesting trasduttore piezoelettricoSECESSHI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indirect calorimetry based on respiratory exchange measurement has been successfully used from the beginning of the century to obtain an estimate of heat production (energy expenditure) in human subjects and animals. The errors inherent to this classical technique can stem from various sources: 1) model of calculation and assumptions, 2) calorimetric factors used, 3) technical factors and 4) human factors. The physiological and biochemical factors influencing the interpretation of calorimetric data include a change in the size of the bicarbonate and urea pools and the accumulation or loss (via breath, urine or sweat) of intermediary metabolites (gluconeogenesis, ketogenesis). More recently, respiratory gas exchange data have been used to estimate substrate utilization rates in various physiological and metabolic situations (fasting, post-prandial state, etc.). It should be recalled that indirect calorimetry provides an index of overall substrate disappearance rates. This is incorrectly assumed to be equivalent to substrate "oxidation" rates. Unfortunately, there is no adequate golden standard to validate whole body substrate "oxidation" rates, and this contrasts to the "validation" of heat production by indirect calorimetry, through use of direct calorimetry under strict thermal equilibrium conditions. Tracer techniques using stable (or radioactive) isotopes, represent an independent way of assessing substrate utilization rates. When carbohydrate metabolism is measured with both techniques, indirect calorimetry generally provides consistent glucose "oxidation" rates as compared to isotopic tracers, but only when certain metabolic processes (such as gluconeogenesis and lipogenesis) are minimal or / and when the respiratory quotients are not at the extreme of the physiological range. However, it is believed that the tracer techniques underestimate true glucose "oxidation" rates due to the failure to account for glycogenolysis in the tissue storing glucose, since this escapes the systemic circulation. A major advantage of isotopic techniques is that they are able to estimate (given certain assumptions) various metabolic processes (such as gluconeogenesis) in a noninvasive way. Furthermore when, in addition to the 3 macronutrients, a fourth substrate is administered (such as ethanol), isotopic quantification of substrate "oxidation" allows one to eliminate the inherent assumptions made by indirect calorimetry. In conclusion, isotopic tracers techniques and indirect calorimetry should be considered as complementary techniques, in particular since the tracer techniques require the measurement of carbon dioxide production obtained by indirect calorimetry. However, it should be kept in mind that the assessment of substrate oxidation by indirect calorimetry may involve large errors in particular over a short period of time. By indirect calorimetry, energy expenditure (heat production) is calculated with substantially less error than substrate oxidation rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The link between energy consumption and economic growth has been widely studied in the economic literature. Understanding this relationship is important from both an environmental and a socio-economic point of view, as energy consumption is crucial to economic activity and human environmental impact. This relevance is even higher for developing countries, since energy consumption per unit of output varies through the phases of development, increasing from an agricultural stage to an industrial one and then decreasing for certain service based economies. In the Argentinean case, the relevance of energy consumption to economic development seems to be particularly important. While energy intensity seems to exhibit a U-Shaped curve from 1990 to 2003 decreasing slightly after that year, total energy consumption increases along the period of analysis. Why does this happen? How can we relate this result with the sustainability debate? All these questions are very important due to Argentinean hydrocarbons dependence and due to the recent reduction in oil and natural gas reserves, which can lead to a lack of security of supply. In this paper we study Argentinean energy consumption pattern for the period 1990-2007, to discuss current and future energy and economic sustainability. To this purpose, we developed a conventional analysis, studying energy intensity, and a non conventional analysis, using the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) accounting methodology. Both methodologies show that the development process followed by Argentina has not been good enough to assure sustainability in the long term. Instead of improving energy use, energy intensity has increased. The current composition of its energy mix, and the recent economic crisis in Argentina, as well as its development path, are some of the possible explanations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Menorca és una illa del Mediterrani occidental i una important destinació turística. El turisme estival és un pilar de l’economia de l’illa i té implicacions en tots els aspectes d’aquesta. Una bona part dels turistes es concentren en nuclis turístics costaners dedicats a una única activitat (l’allotjament de turistes). En aquest projecte s’estudien els consums i els potencials de captació d’aigua i energia de cinc nuclis turístics menorquins i alguns dels seus establiments turístics i se n’avalua el potencial d’autosuficiència. També es fa un estudi de mobilitat dels turistes, a partir del qual es quantifica el cost energètic de la mobilitat i les emissions de CO2 que se’n deriven. Les eines utilitzades han estat enquestes i Sistemes d’Informació Geogràfica. Els resultats mostren que el consum hídric per persona és molt variable (de 98 a 466 litres diaris). El consum elèctric per persona és més homogeni que el d’aigua (entre 5 i 10 kWh·persona-1·dia-1 a nivell de nucli turístic) i presenta valors superiors en allotjaments del tipus hotel que del tipus apartaments. Els trajectes d’anada i tornada a l’illa amb avió o vaixell representen més del 80% del cost energètic total de les vacances a Menorca (aprox. 1 MWh per estada) i de les emissions de CO2 associades. Els turistes espanyols recorren un 180% més de distància en desplaçaments a l’interior de l’illa que els d’altres nacionalitats. L’aprofitament d’aigües pluvials podria cobrir menys del 25% de les necessitats hídriques de la majoria d’allotjaments turístics i entre el 28 i el 36% de les necessitats hídriques totals dels nuclis turístics, mantenint-se els nivells actuals de consum. La captació d’energia solar fotovoltaica in situ podria arribar a suplir entre el 50 i el 90% del consum d’energia elèctrica en els nuclis turístics i fins al 100% del mateix en alguns allotjaments turístics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole body protein metabolism and resting energy expenditure (REE) were measured at 11, 23, and 33 wk of pregnancy in nine pregnant (not malnourished) Gambian women and in eight matched nonpregnant nonlactating (NPNL) matched controls. Rates of whole body nitrogen flux, protein synthesis, and protein breakdown were determined in the fed state from the level of isotope enrichment of urinary urea and ammonia during a period of 9 h after a single oral dose of [15N]glycine. At regular intervals, REE was measured by indirect calorimetry (hood system). Based on the arithmetic end-product average of values obtained with urea and ammonia, a significant increase in whole body protein synthesis was observed during the second trimester (5.8 +/- 0.4 g.kg-1.day-1) relative to values obtained both for the NPNL controls (4.5 +/- 0.3 g.kg-1.day-1) and those during the first trimester (4.7 +/- 0.3 g.kg-1.day-1). There was a significant rise in REE during the third trimester both in the preprandial and postprandial states. No correlation was found between REE after meal ingestion and the rate of whole body protein synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes the role of the energy transformation index and of final energy consumption per GDP unit in the disparities in energy intensity across countries. In that vein, we use a Theil decomposition approach to analyze global primary energy intensity inequality as well as inequality across different regions of the world and inequality within these regions. The paper first demonstrates the pre-eminence of divergence in final energy consumption per GDP unit in explaining global primary energy intensity inequality and its evolution during the 1971-2006 period. Secondly, it shows the lower (albeit non negligible) impact of the transformation index in global primary energy inequality. Thirdly, the relevance of regions as unit of analysis in studying crosscountry energy intensity inequality and their explanatory factors is highlighted. And finally, how regions around the world differ as to the relevance of the energy transformation index in explaining primary energy intensity inequality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Objectives: Studies show that inflammation can contribute to an increase in resting energy expenditure in patients with chronic kidney disease; however, findings about total energy expenditure (TEE) have not been reported. The aim of this study was to evaluate the effects of inflammation on TEE and physical activity energy expenditure in hemodialysis (HD) patients.Design: This was a cross-sectional study.Setting: This study was conducted from Hopital Edouard Herriot, Lyon, France.Patients: This study included 24 HD patients and 18 healthy subjects.Main Outcome Measure: TEE and step counts were measured over a 7-day period by the SenseWear Pro2 Armband in 24 HD patients (15 patients with C-reactive protein,5 mg/L, aged 67.0 +/- 6 14.7 years, and 9 with C-reactive protein >5 mg/L, aged 69.0 +/- 6 18.0 years) and compared with 18 healthy subjects (62.3 +/- 6 15.3 years).Results: Mean estimated TEE measured with SenseWear Pro2 Armband was significantly lower (25.5 +/- 4.1 kcal/kg/day) in patients with inflammation when compared with those without inflammation (32.0 +/- 6.7 kcal/kg/day) and with healthy subjects (31.8 +/- 6 7.0 kcal/kg/day) (P = .012). There was a difference in the physical activity (step counts) between patient groups (P < .05). Healthy subjects and patients without inflammation walked more (8,107 +/- 5,419 and 6,016 +/- 3,752 steps/day, respectively) as compared with patients with inflammation (2,801 +/- 2,754 steps/day, P = .001).Conclusion: Our findings suggest that patients with inflammation have a lower TEE when compared with healthy subjects and patients without inflammation. TEE is influenced by physical activity because patients with inflammation appear to be less active. (C) 2011 by the National Kidney Foundation, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study I try to explain the systemic problem of the low economic competitiveness of nuclear energy for the production of electricity by carrying out a biophysical analysis of its production process. Given the fact that neither econometric approaches nor onedimensional methods of energy analyses are effective, I introduce the concept of biophysical explanation as a quantitative analysis capable of handling the inherent ambiguity associated with the concept of energy. In particular, the quantities of energy, considered as relevant for the assessment, can only be measured and aggregated after having agreed on a pre-analytical definition of a grammar characterizing a given set of finite transformations. Using this grammar it becomes possible to provide a biophysical explanation for the low economic competitiveness of nuclear energy in the production of electricity. When comparing the various unit operations of the process of production of electricity with nuclear energy to the analogous unit operations of the process of production of fossil energy, we see that the various phases of the process are the same. The only difference is related to characteristics of the process associated with the generation of heat which are completely different in the two systems. Since the cost of production of fossil energy provides the base line of economic competitiveness of electricity, the (lack of) economic competitiveness of the production of electricity from nuclear energy can be studied, by comparing the biophysical costs associated with the different unit operations taking place in nuclear and fossil power plants when generating process heat or net electricity. In particular, the analysis focuses on fossil-fuel requirements and labor requirements for those phases that both nuclear plants and fossil energy plants have in common: (i) mining; (ii) refining/enriching; (iii) generating heat/electricity; (iv) handling the pollution/radioactive wastes. By adopting this approach, it becomes possible to explain the systemic low economic competitiveness of nuclear energy in the production of electricity, because of: (i) its dependence on oil, limiting its possible role as a carbon-free alternative; (ii) the choices made in relation to its fuel cycle, especially whether it includes reprocessing operations or not; (iii) the unavoidable uncertainty in the definition of the characteristics of its process; (iv) its large inertia (lack of flexibility) due to issues of time scale; and (v) its low power level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro-RNAs (miRNAs) are key, post-transcriptional regulators of gene expression and have been implicated in almost every cellular process investigated thus far. However, their role in sleep, in particular the homeostatic aspect of sleep control, has received little attention. We here assessed the effects of sleep deprivation on the brain miRNA transcriptome in the mouse. Sleep deprivation affected miRNA expression in a brain-region specific manner. The forebrain expression of the miRNA miR-709 was affected the most and in situ analyses confirmed its robust increase throughout the brain, especially in the cerebral cortex and the hippocampus. The hippocampus was a major target of the sleep deprivation affecting 37 miRNAs compared to 52 in the whole forebrain. Moreover, independent from the sleep deprivation condition, miRNA expression was highly region-specific with 45% of all expressed miRNAs showing higher expression in hippocampus and 55% in cortex. Next we demonstrated that down-regulation of miRNAs in Com/c2o-expressing neurons of adult mice, through a conditional and inducible Dicer knockout mice model (cKO), results in an altered homeostatic response after sleep deprivation eight weeks following the tamoxifen-induced recombination. Dicer cKO mice showed a larger increase in the electro-encephalographic (EEG) marker of sleep pressure, EEG delta power, and a reduced Rapid Eye Movement sleep rebound, compared to controls, highlighting a functional role of miRNAs in sleep homeostasis. Beside a sleep phenotype, Dicer cKO mice developed an unexpected, severe obesity phenotype associated with hyperphagia and altered metabolism. Even more surprisingly, after reaching maximum body weight 5 weeks after tamoxifen injection, obese cKO mice spontaneously started losing weight as rapidly as it was gained. Brain transcriptome analyses in obese mice identified several obesity-related pathways (e.g. leptin, somatostatin, and nemo-like kinase signaling), as well as genes involved in feeding and appetite (e.g. Pmch, Neurotensin). A gene cluster with anti-correlated expression in the cerebral cortex of post-obese compared to obese mice was enriched for synaptic plasticity pathways. While other studies have identified a role for miRNAs in obesity, we here present a unique model that allows for the study of processes involved in reversing obesity. Moreover, our study identified the cortex as a brain area important for body weight homeostasis. Together, these observations strongly suggest a role for miRNAs in the maintenance of homeostatic processes in the mouse, and support the hypothesis of a tight relationship between sleep and metabolism at a molecular - Les micro-ARNS (miARNs) sont des régulateurs post-transcriptionnels de l'expression des gènes, impliqués dans la quasi-totalité des processus cellulaires. Cependant, leur rôle dans la régulation du sommeil, et en particulier dans le maintien de l'homéostasie du sommeil, n'a reçu que très peu d'attention jusqu'à présent. Dans cette étude, nous avons étudié les conséquences d'une privation de sommeil sur l'expression cérébrale des miARNs chez la souris, et observé des changements dans l'expression de nombreux miARNs. Dans le cerveau antérieur, miR-709 est le miARN le plus affecté par la perte de sommeil, en particulier dans le cortex cérébral et l'hippocampe. L'hippocampe est la région la plus touchée avec 37 miARNs changés comparés à 52 dans le cerveau entier. Par ailleurs, indépendamment de la privation de sommeil, certains miARNs sont spécifiquement enrichis dans certaines aires cérébrales, 45% des miARNs étant surexprimés dans l'hippocampe contre 55% dans le cortex. Dans une seconde étude, nous avons observé que la délétion de DICER, enzyme essentielle à la biosynthèse des miARNs, et la perte subséquente des miARNs dans les neurones exprimant la protéine CAMK2a altère la réponse homéostatique à une privation de sommeil, 8 semaines après l'induction de la recombinaison génétique par le tamoxifen. Les souris sans Dicer (cKO) ont une plus large augmentation de l'EEG delta power, le principal marqueur électro-encéphalographique du besoin de sommeil, comparée aux contrôles, ainsi qu'un rebond en sommeil paradoxal plus petit. De façon surprenante, les souris Dicer cKO développent une obésité rapide, sévère et transitoire, associée à de l'hyperphagie et une altération de leur métabolisme énergétique. Après avoir atteint un pic maximal d'obésité, les souris cKO entrent spontanément dans une période de perte de poids rapide. L'analyse du transcriptome cérébral des souris obèses nous a permis d'identifier des voies associées à l'obésité (leptine, somatostatine et nemo-like kinase), et à la prise alimentaire (Pmch, Neurotensin), tandis que celui des souris post-obèses a révélé un groupe de gènes liés à la plasticité synaptique. Au-delà des nombreux modèles d'obésité existant chez la souris, notre étude présente un modèle unique permettant d'étudier les mécanismes sous-jacent la perte de poids. De plus, nous avons mis en évidence un rôle important du cortex cérébral dans le maintien de la balance énergétique. En conclusion, toutes ces observations soutiennent l'idée que les miARNs sont des régulateurs cruciaux dans le maintien des processus homéostatiques et confortent l'hypothèse d'une étroite relation moléculaire entre le sommeil et le métabolisme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the effect of smoking on energy expenditure in eight healthy cigarette smokers who spent 24 hours in a metabolic chamber on two occasions, once without smoking and once while smoking 24 cigarettes per day. Diet and physical exercise (30 minutes of treadmill walking) were standardized on both occasions. Physical activity in the chamber was measured by use of a radar system. Smoking caused an increase in total 24-hour energy expenditure (from a mean value [+/- SEM] of 2230 +/- 115 to 2445 +/- 120 kcal per 24 hours; P less than 0.001), although no changes were observed in physical activity or mean basal metabolic rate (1545 +/- 80 vs. 1570 +/- 70 kcal per 24 hours). During the smoking period, the mean diurnal urinary excretion of norepinephrine (+/- SEM) increased from 1.25 +/- 0.14 to 1.82 +/- 0.28 micrograms per hour (P less than 0.025), and mean nocturnal excretion increased from 0.73 +/- 0.07 to 0.91 +/- 0.08 micrograms per hour (P less than 0.001). These short-term observations demonstrate that cigarette smoking increases 24-hour energy expenditure by approximately 10 percent, and that this effect may be mediated in part by the sympathetic nervous system. The findings also indicate that energy expenditure can be expected to decrease when people stop smoking, thereby favoring the gain in body weight that often accompanies the cessation of smoking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent technological advances in remote sensing have enabled investigation of the morphodynamics and hydrodynamics of large rivers. However, measuring topography and flow in these very large rivers is time consuming and thus often constrains the spatial resolution and reach-length scales that can be monitored. Similar constraints exist for computational fluid dynamics (CFD) studies of large rivers, requiring maximization of mesh-or grid-cell dimensions and implying a reduction in the representation of bedform-roughness elements that are of the order of a model grid cell or less, even if they are represented in available topographic data. These ``subgrid'' elements must be parameterized, and this paper applies and considers the impact of roughness-length treatments that include the effect of bed roughness due to ``unmeasured'' topography. CFD predictions were found to be sensitive to the roughness-length specification. Model optimization was based on acoustic Doppler current profiler measurements and estimates of the water surface slope for a variety of roughness lengths. This proved difficult as the metrics used to assess optimal model performance diverged due to the effects of large bedforms that are not well parameterized in roughness-length treatments. However, the general spatial flow patterns are effectively predicted by the model. Changes in roughness length were shown to have a major impact upon flow routing at the channel scale. The results also indicate an absence of secondary flow circulation cells in the reached studied, and suggest simpler two-dimensional models may have great utility in the investigation of flow within large rivers. Citation: Sandbach, S. D. et al. (2012), Application of a roughness-length representation to parameterize energy loss in 3-D numerical simulations of large rivers, Water Resour. Res., 48, W12501, doi: 10.1029/2011WR011284.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy metabolism in elderly subjects is discussed on the basis of previous analyses of the influence of age on the three components of energy expenditure in man: basal metabolic rate, thermogenesis and physical activity. All three components are diminished in elderly people. We conclude that the modifications of body composition, in particular the age-related loss of lean body mass, result in decreased basal metabolic rate and probably also a blunted diet-induced thermogenesis. Moreover we emphasize that the decrease in physical activity observed in elderly people is the most likely causal factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2011, the National Energy Retrofit Programme will build upon existing energy saving programmes in both the domestic and non-domestic sectors.  This consultation focused on key design considerations.  IPH agree with the commitment to deliver a National Energy Retrofit Programme as a sustainable means of securing energy savings and reducing energy poverty and the nations carbon footprint.  The IPH response highlighted the significant benefit to health and would support the use of Health Impact Assessment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The draft Framework set out the proposed priorities for Northern Ireland's energy future over the next ten years or so and illustrates the key energy goals in term of competitiveness, security of energy supply, sustainablilty and infrastructure investment. It also proposes new and ambitious renewable electricity and renewable heat targets by 2020, which reflect the need for effected action against climate change and the need to address other policy goals in terms of security and sustainability of supply and costs.