996 resultados para electron cooling
Resumo:
In this paper we describe an experiment on laser cooling of Rb-87 atoms directly from a vapor background in diffuse light. Diffuse light is produced in a ceramic integrating sphere by multiple scattering of two laser beams injected through multimode fibers. A probe beam, whose propagation direction is either horizontal or vertical, is used to detect cold atoms. We measured the absorption spectra of the cold atoms by scanning the frequency of the probe beam, and observed both the absorption signal and the time of flight signal after we switched off the cooling light, from which we estimated the temperature and the number of cold atoms. This method is clearly attractive for building a compact cold atom clock.
Resumo:
The temperature dependences of the reduction potentials (Eo') of wildtype human myoglobin (Mb) and three site-directed mutants have been measured by using thin-layer spectroelectrochemistry. Residue Val68, which is in van der Waals contact with the heme in Mb, has been replaced by Glu, Asp, and Asn. At pH 7.0, reduction of the heme iron (III) in the former two proteins is accompanied by uptake of a proton by the protein. The changes in Eo', and the standard entropy (ΔSo') and enthalpy (ΔHo') of reduction in the mutant proteins were determined relative to values for wild-type; the change in Eo' at 25°C was about -200 millivolts for the Glu and Asp mutants, and about -80 millivolts for the Asn mutant. Reduction of Fe(III) to Fe(II) in the Glu and Asp mutants is accompanied by uptake of a proton. These studies demonstrate that Mb can tolerate substitution of a buried hydrophobic group by potentially charged and polar residues, and that such amino acid replacements can lead to substantial changes in the redox thermodynamics of the protein.
Through analysis of the temperature dependence and shapes of NMR dispersion signals, it is determined that a water molecule is bound to the sixth coordination site of the ferric heme in the Val68Asp and in the Val68Asn recombinant proteins while the carboxyl group of the sidechain of Glu68 occupies this position in Val68Glu. The relative rhombic distortions in the ESR spectra of these mutant proteins combined with H217O and spin interconversion experiments performed on them confirm the conclusions of the NMRD study.
The rates of intramolecular electron transfer (ET) of (NH3)5Ru-His48 (Val68Asp, His81GIn, Cys110AIa)Mb and (NH3)5Ru-His48 (Val68GIu,His81GIn,Cys110Ala)Mb were measured to be .85(3)s-1 and .30(2)s-1, respectively. This data supports the hypothesis that entropy of 111 reduction and reorganization energy of ET are inversely related. The rates of forward and reverse ET for (NH3)5 Ru-His48 (Val68GIu, His81 GIn, Cys110AIa)ZnMb -7.2(5)•104s-1and 1.4(2)•105s-1, respectively- demonstrate that the placement of a highly polar residue nearby does not significantly change the reorganization energy of the photoactive Zn porphyrin.
The distal histidine imidazoles of (NH3)4isnRu-His48 SWMb and (NH3)5Ru-His48 SWMb were cyanated with BrCN. The intramolecular ET rates of these BrCN-modified Mb derivatives are 5.5(6)s-1 and 3.2(5)s-1, respectively. These respective rates are 20 and 10 times faster than those of their noncyanated counterparts after the differences in ET rate from driving force are scaled according to the Marcus equation. This increase in ET rate of the cyanated Mb derivatives is attributed to lower reorganization energy since the cyanated Mb heme is pentacoordinate in both oxidation states; whereas, the native Mb heme loses a water molecule upon reduction so that it changes from six to five coordinate. The reorganization energy from Fe-OH2 dissociation is estimated to be .2eV. This conclusion is used to reconcile data from previous experiments in our lab. ET in photoactive porphyrin-substituted myoglobins proceed faster than predicted by Marcus Theory when it is assumed that the only difference in ET parameters between photoactive porphyrins and native heme systems is driving force. However, the data can be consistently fit to Marcus Theory if one corrects for the smaller reorganization in the photoactive porphyrin systems since they do not undergo a coordination change upon ET.
Finally, the intramolecular ET rate of (NH3)4isnRu-His48 SWMb was measured to be 3.0(4)s-1. This rate is within experimental error of that for (NH3)4pyrRu-His48 SWMb even though the former has 80mV more driving force. One likely possibility for this observation is that the tetraamminepyridineruthenium group undergoes less reorganization upon ET than the tetraammineisonicotinamideruthenium group. Moreover, analysis of the (NH3)4isnRu-His48 SWMb experimental system gives a likely explanation of why ET was not observed previously in (NH3)4isnRu-Cytochrome C.
Resumo:
Description of a simple method for counting bacteria with active electron transport systems in water and sediment samples. Sodium succinate, NADH and NADPH served as electron donors. It is possible to see several sites of electron transport in the larger cells. Especially impressive are the plankton-algae, protozoa, and small metazoa. This is a partial translation of the ”method” section only.
Resumo:
A compact two-step modified-signed-digit arithmetic-logic array processor is proposed. When the reference digits are programmed, both addition and subtraction can be performed by the same binary logic operations regardless of the sign of the input digits. The optical implementation and experimental demonstration with an electron-trapping device are shown. Each digit is encoded by a single pixel, and no polarization is included. Any combinational logic can be easily performed without optoelectronic and electro-optic conversions of the intermediate results. The system is compact, general purpose, simple to align, and has a high signal-to-noise ratio. (C) 1999 Optical Society of America.
Resumo:
Techniques are described for mounting and visualizing biological macromolecules for high resolution electron microscopy. Standard techniques are included in a discussion of new methods designed to provide the highest structural resolution. Methods are also discussed for handling samples on the grid, for making accurate size measurements at the 20 Å level, and for photographically enhancing image contrast.
The application of these techniques to the study of the binding of DNA polymerase to DNA is described. It is shown that the electron micrographs of this material are in agreement with the model proposed by Dr. Arthur Kornberg. A model is described which locates several active sites on the enzyme.
The chromosomal material of the protozoan tetrahymena has been isolated and characterized by biochemical techniques and by electron microscopy. This material is shown to be typical of chromatin of higher creatures.
Comparison with other chromatins discloses that the genome of tetrahymena is highly template active and has a relatively simple genetic construction.
High resolution electron microscope procedures developed in this work have been combined with standard biochemical techniques to give a comprehensive picture of the structure of interphase chromosome fibers. The distribution of the chromosomal proteins along its DNA is discussed.
Resumo:
Magnetic resonance techniques have given us a powerful means for investigating dynamical processes in gases, liquids and solids. Dynamical effects manifest themselves in both resonance line shifts and linewidths, and, accordingly, require detailed analyses to extract desired information. The success of a magnetic resonance experiment depends critically on relaxation mechanisms to maintain thermal equilibrium between spin states. Consequently, there must be an interaction between the excited spin states and their immediate molecular environment which promote changes in spin orientation while excess magnetic energy is coupled into other degrees of freedom by non-radiative processes. This is well known as spin-lattice relaxation. Certain dynamical processes cause fluctuations in the spin state energy levels leading to spin-spin relaxation and, here again, the environment at the molecular level plays a significant role in the magnitude of interaction. Relatively few electron spin relaxation studies of solutions have been conducted and the present work is addressed toward the extension of our knowledge in this area and the retrieval of dynamical information from line shape analyses on a time scale comparable to diffusion controlled phenomena.
Specifically, the electron spin relaxation of three Mn+23d5 complexes, Mn(CH3CN)6+2, MnCl4-2 in acetonitrile has been studied in considerable detail. The effective spin Hamiltonian constants were carefully evaluated under a wide range of experimental conditions. Resonance widths of these Mn+2 complexes were studied in the presence of various excess ligand ions and as a function of concentration, viscosity, temperature and frequency (X-band, ~9.5 Ԍ Hz and K-band, ~35 Ԍ Hz).
A number of interesting conclusions were drawn from these studies. For the Et4NCl-4-2 system several relaxation mechanisms leading to resonance broadening were observed. One source appears to arise through spin-orbit interactions caused by modulation of the ligand field resulting from transient distortions of the complex imparted by solvent fluctuations in the immediate surroundings of the paramagnetic ion. An additional spin relaxation was assigned to the formation of ion pairs [Et4N+…MnCl4-2] and it was possible to estimate the dissociation constant for this specie in acetonitrile.
The Bu4NBr-MnBr4-2 study was considerably more interesting. As in the former case, solvent fluctuations and ion-pairing of the paramagnetic complex [Bu4N+…MnBr4-2] provide significant relaxation for the electronic spin system. Most interesting, without doubt, is the onset of a new relaxation mechanism leading to resonance broadening which is best interpreted as chemical exchange. Thus, assuming that resonance widths were simply governed by electron spin state lifetimes, we were able to extract dynamical information from an interaction in which the initial and final states are the same
MnBr4-2 + Br- = MnBr4-2 + Br-.
The bimolecular rate constants were obtained at six different temperatures and their magnitudes suggested that the exchange is probably diffusion controlled with essentially a zero energy of activation. The most important source of spin relaxation in this system stems directly from dipolar interactions between the manganese 3d5 electrons. Moreover, the dipolar broadening is strongly frequency dependent indicating a deviation between the transverse and longitudinal relaxation times. We are led to the conclusion that the 3d5 spin states of ion-paired MnBr4-2 are significantly correlated so that dynamical processes are also entering the picture. It was possible to estimate the correlation time, Td, characterizing this dynamical process.
In Part II we study nuclear magnetic relaxation of bromine ions in the MnBr4-2-Bu4NBr-acetonitrile system. Essentially we monitor the 79Br and 81Br linewidths in response to the [MnBr4-2]/[Br-] ratio with the express purpose of supporting our contention that exchange is occurring between "free" bromine ions in the solvent and bromine in the first coordination sphere of the paramagnetic anion. The complexity of the system elicited a two-part study: (1) the linewidth behavior of Bu4NBr in anhydrous CH3CN in the absence of MnBr4-2 and (2) in the presence of MnBr4-2. It was concluded in study (1) that dynamical association, Bu4NBr k1= Bu4N+ + Br-, was modulating field-gradient interactions at frequencies high enough to provide an estimation of the unimolecular rate constant, k1. A comparison of the two isotopic bromine linewidth-mole fraction results led to the conclusion that quadrupole interactions provided the dominant relaxation mechanism. In study (2) the "residual" bromine linewidths for both 79Br and 81Br are clearly controlled by quadrupole interactions which appear to be modulated by very rapid dynamical processes other than molecular reorientation. We conclude that the "residual" linewidth has its origin in chemical exchange and that bromine nuclei exchange rapidly between a "free" solvated ion and the paramagnetic complex, MnBr4-2.
Resumo:
In this paper the photorefractive sensitivity defined for single-centre holographic recording is modified to adapt two-centre holographic recording. Based on the time analytic solution of Kukhtarev equations for doubly doped crystals, the analytical expression of photorefractive sensitivity is given. For comparison with single-centre holographic recording and summing the electron competition effects between the deeper and shallower traps, an effective electron transport length is proposed, which varies with the intensity ratios of recording light to sensitive light. According to analyses in this paper, the lower photorefractive sensitivity in two-centre holographic recording is mainly due to the lower concentration of unionized dopants in the shallower centre and the lower effective electron transport length.
Resumo:
We have investigated ultraviolet (UV) photorefractive effect of lithium niobate doubly doped with Ce and Cu. It is found the diffraction efficiency shows oscillating behavior Under UV-1ight-recording. A model in which electrons and holes can be excited from impurity centers in the UV region is proposed to study the oscillatory behavior of the diffraction efficiency. Oil the basis of the material equations and the coupled-wave equations, we found that the oscillatory behavior is due to the oscillation of the relative spatial phase shift Phi. And the electron-hole competition may cause the oscillation of the relative spatial phase shift. A switch point from electron grating to hole grating is chosen to realize nonvolatile readout by a red light with high sensitivity (0.4 cm/J). (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
A series of meso-phenyloctamethylporphyrins covalently bonded at the 4'phenyl position to quinones via rigid bicyclo[2.2.2]octane spacers were synthesized for the study of the dependence of electron transfer reaction rate on solvent, distance, temperature, and energy gap. A general and convergent synthesis was developed based on the condensation of ac-biladienes with masked quinonespacer-benzaldehydes. From picosecond fluorescence spectroscopy emission lifetimes were measured in seven solvents of varying polarity. Rate constants were determined to vary from 5.0x109sec-1 in N,N-dimethylformamide to 1.15x1010 Sec-1 in benzene, and were observed to rise at most by about a factor of three with decreasing solvent polarity. Experiments at low temperature in 2-MTHF glass (77K) revealed fast, nearly temperature-independent electron transfer characterized by non-exponential fluorescence decays, in contrast to monophasic behavior in fluid solution at 298K. This example evidently represents the first photosynthetic model system not based on proteins to display nearly temperature-independent electron transfer at high temperatures (nuclear tunneling). Low temperatures appear to freeze out the rotational motion of the chromophores, and the observed nonexponential fluorescence decays may be explained as a result of electron transfer from an ensemble of rotational conformations. The nonexponentiality demonstrates the sensitivity of the electron transfer rate to the precise magnitude of the electronic matrix element, which supports the expectation that electron transfer is nonadiabatic in this system. The addition of a second bicyclooctane moiety (15 Å vs. 18 Å edge-to-edge between porphyrin and quinone) reduces the transfer rate by at least a factor of 500-1500. Porphyrinquinones with variously substituted quinones allowed an examination of the dependence of the electron transfer rate constant κET on reaction driving force. The classical trend of increasing rate versus increasing exothermicity occurs from 0.7 eV≤ |ΔG0'(R)| ≤ 1.0 eV until a maximum is reached (κET = 3 x 108 sec-1 rising to 1.15 x 1010 sec-1 in acetonitrile). The rate remains insensitive to ΔG0 for ~ 300 mV from 1.0 eV≤ |ΔG0’(R)| ≤ 1.3 eV, and then slightly decreases in the most exothermic case studied (cyanoquinone, κET = 5 x 109 sec-1).
Resumo:
The subject of this thesis is the measurement and interpretation of thermopower in high-mobility two-dimensional electron systems (2DESs). These 2DESs are realized within state-of-the-art GaAs/AlGaAs heterostructures that are cooled to temperatures as low as T = 20 mK. Much of this work takes place within strong magnetic fields where the single-particle density of states quantizes into discrete Landau levels (LLs), a regime best known for the quantum Hall effect (QHE). In addition, we review a novel hot-electron technique for measuring thermopower of 2DESs that dramatically reduces the influence of phonon drag.
Early chapters concentrate on experimental materials and methods. A brief overview of GaAs/AlGaAs heterostructures and device fabrication is followed by details of our cryogenic setup. Next, we provide a primer on thermopower that focuses on 2DESs at low temperatures. We then review our experimental devices, temperature calibration methods, as well as measurement circuits and protocols.
Latter chapters focus on the physics and thermopower results in the QHE regime. After reviewing the basic phenomena associated with the QHE, we discuss thermopower in this regime. Emphasis is given to the relationship between diffusion thermopower and entropy. Experimental results demonstrate this relationship persists well into the fractional quantum Hall (FQH) regime.
Several experimental results are reviewed. Unprecedented observations of the diffusion thermopower of a high-mobility 2DES at temperatures as high as T = 2 K are achieved using our hot-electron technique. The composite fermion (CF) effective mass is extracted from measurements of thermopower at LL filling factor ν = 3/2. The thermopower versus magnetic field in the FQH regime is shown to be qualitatively consistent with a simple entropic model of CFs. The thermopower at ν = 5/2 is shown to be quantitatively consistent with the presence of non-Abelian anyons. An abrupt collapse of thermopower is observed at the onset of the reentrant integer quantum Hall effect (RIQHE). And the thermopower at temperatures just above the RIQHE transition suggests the existence of an unconventional conducting phase.
Resumo:
Part I
Several approximate Hartree-Fock SCF wavefunctions for the ground electronic state of the water molecule have been obtained using an increasing number of multicenter s, p, and d Slater-type atomic orbitals as basis sets. The predicted charge distribution has been extensively tested at each stage by calculating the electric dipole moment, molecular quadrupole moment, diamagnetic shielding, Hellmann-Feynman forces, and electric field gradients at both the hydrogen and the oxygen nuclei. It was found that a carefully optimized minimal basis set suffices to describe the electronic charge distribution adequately except in the vicinity of the oxygen nucleus. Our calculations indicate, for example, that the correct prediction of the field gradient at this nucleus requires a more flexible linear combination of p-orbitals centered on this nucleus than that in the minimal basis set. Theoretical values for the molecular octopole moment components are also reported.
Part II
The perturbation-variational theory of R. M. Pitzer for nuclear spin-spin coupling constants is applied to the HD molecule. The zero-order molecular orbital is described in terms of a single 1s Slater-type basis function centered on each nucleus. The first-order molecular orbital is expressed in terms of these two functions plus one singular basis function each of the types e-r/r and e-r ln r centered on one of the nuclei. The new kinds of molecular integrals were evaluated to high accuracy using numerical and analytical means. The value of the HD spin-spin coupling constant calculated with this near-minimal set of basis functions is JHD = +96.6 cps. This represents an improvement over the previous calculated value of +120 cps obtained without using the logarithmic basis function but is still considerably off in magnitude compared with the experimental measurement of JHD = +43 0 ± 0.5 cps.
Resumo:
A review of the theory of electron scattering indicates that low incident beam energies and large scattering angles are the favorable conditions for the observation of optically forbidden transitions in atoms and molecules.
An apparatus capable of yielding electron impact spectra at 90° with incident electron beam energies between 30 and 50 electron volts is described. The resolution of the instrument is about 1 electron volt.
Impact spectra of thirteen molecules have been obtained. Known forbidden transitions to the helium 23S, the hydrogen b3Ʃ+u, the nitrogen A3Ʃ+u, B3πg, a’πg, and C3πu, the carbon monoxide a3π, the ethylene ᾶ3B1u, and the benzene ᾶ3B1u states from the corresponding ground states have been observed.
In addition, singlet-triplet vertical transitions in acetylene, propyne, propadiene, norbornadiene and quadricyclene, peaking at 5.9, 5.9, 4.5, 3.8, and 4.0 ev (±0.2 ev), respectively, have been observed and assigned for the first time.
Resumo:
The optomechanical interaction is an extremely powerful tool with which to measure mechanical motion. The displacement resolution of chip-scale optomechanical systems has been measured on the order of 1⁄10th of a proton radius. So strong is this optomechanical interaction that it has recently been used to remove almost all thermal noise from a mechanical resonator and observe its quantum ground-state of motion starting from cryogenic temperatures.
In this work, chapter 1 describes the basic physics of the canonical optomechanical system, optical measurement techniques, and how the optomechanical interaction affects the coupled mechanical resonator. In chapter 2, we describe our techniques for realizing this canonical optomechanical system in a chip-scale form factor.
In chapter 3, we describe an experiment where we used radiation pressure feedback to cool a mesoscopic mechanical resonator near its quantum ground-state from room-temperature. We cooled the resonator from a room temperature phonon occupation of <n> = 6.5 million to an occupation of <n> = 66, which means the resonator is in its ground state approximately 2% of the time, while being coupled to a room-temperature thermal environment. At the time of this work, this is the closest a mesoscopic mechanical resonator has been to its ground-state of motion at room temperature, and this work begins to open the door to room-temperature quantum control of mechanical objects.
Chapter 4 begins with the realization that the displacement resolutions achieved by optomechanical systems can surpass those of conventional MEMS sensors by an order of magnitude or more. This provides the motivation to develop and calibrate an optomechanical accelerometer with a resolution of approximately 10 micro-g/rt-Hz over a bandwidth of approximately 30 kHz. In chapter 5, we improve upon the performance and practicality of this sensor by greatly increasing the test mass size, investigating and reducing low-frequency noise, and incorporating more robust optical coupling techniques and capacitive wavelength tuning. Finally, in chapter 6 we present our progress towards developing another optomechanical inertial sensor - a gyroscope.