930 resultados para cool
Resumo:
A ridge of peridotite was drilled off of the Galicia margin (Hole 637A) during ODP Leg 103. The ridge is located at the approximate boundary between oceanic and continental crust. This setting is of interest because the peridotite may be representative of upwelling upper mantle beneath an incipient ocean basin. The composition of the Galicia margin peridotite is compared with those of other North Atlantic peridotites. Hole 637A ultramafic lithologies include clinopyroxene-rich spinel harzburgite and lherzolite, as well as plagioclase-bearing peridotites. Variations in mineral modal abundances and mineral compositions are observed but are not systematic. The peridotites are broadly similar in composition to other peridotites recovered from ocean basins, but the mineral compositions and abundances suggest that they are less depleted in basaltic components than other North Atlantic peridotites by about 10%. In particular, the peridotites are enriched in the magmaphilic elements Na, Al, and Ti, as compared with other abyssal peridotites. The high abundances of these elements suggest that the Hole 637A peridotites had experienced, at most, very small amounts of partial melting prior to their emplacement. The presence of plagioclase rimming spinel in some samples suggests that the peridotite last equilibrated at about 9 kbar, near the transition between plagioclase- and spinel-peridotite stability fields. Temperatures of equilibration of the peridotite are calculated as 900°-1100°C. The relatively undepleted composition of the peridotite indicates that it was emplaced at a shallow mantle level under a relatively cool thermal regime and cooled below solidus temperatures without having participated in any significant partial melting and basalt production. This is consistent with the emplacement of the peridotite during incipient rifting of the ocean basin, before a true spreading center was established.
Resumo:
The latest Campanian-earliest Maastrichtian interval is well known as a period of intense climate cooling. This cooling caused a distinctive bipolar biogeographic distribution of calcareous nannofossil assemblages: High latitude settings were dominated by newly evolving endemic taxa, former cosmopolitan species disappeared at the same time and equatorial communities experienced an invasion of cool water taxa. The impact of this cooling on northern mid-latitude assemblages is, however, less well known. In order to overcome this gap we studied the Kronsmoor section (northwest Germany). This section provides a continuous upper Campanian - lower Maastrichtian succession with moderately to well preserved nannofossils. Uppermost Campanian assemblages are dominated by Prediscosphaera cretacea; other common taxa include Prediscosphaera stoveri, Watznaueria barnesiae and Micula staurophora. The lower Maastrichtian is characterized by lower numbers of P. cretacea and frequent Kamptnerius magnificus, Arkhangelskiella cymbiformis and Cribrosphaerella ehrenbergii. These changes reflect, in part, the Campanian-Maastrichtian boundary cooling since some successful taxa (e.g. K. magnificus) are related to cool surface waters. Other shifts in the nannofossil communities were perhaps the result of a changing nutrient regime. Stronger latitudinal gradients may have increased wind velocities and thus the eolian input of ferruginous dust required by N-fixing bacteria. The enhanced high latitude deep-water formation probably changed the bottom-water environment in disfavor of denitrificating organisms. A decline of chemical weathering and fluviatile transport may have reduced the amount of bioavailable phosphate. These processes led to an increased nitrate and a decreased phosphate content shifting the nutrient regime from nitrate towards phosphate limitation.
Resumo:
Based on pollen analysis of a sediment core from the Atlantic Ocean off Liberia the West African vegetation history for the last 400 ka is reconstructed. During the cold oxygen isotope stages 12, 10, 8, 6, 4, 3 and 2 an arid climate is indicated, resulting in a southward shifting of the southern border of the savanna. Late Pleistocene glacial stages were more arid than during the Middle Pleistocene. A persistence of the rain forest in the area, even during the glacial stages, is recorded. This suggests a glacial refuge of rain forest situated in the Guinean mountains. Afromontane forests with Podocarpus occurred in the Guinean mountains from the stages 12 to 2 and disappeared after. The tree expanded from higher to lower elevations twice in the warm oxygen isotope stage 11 (pollen subzones 11d, 11b) and at least twice during the warm stage 5 (pollen subzones 5d, 5a), indicating a relative cool but humid climate for these periods.
Resumo:
A high-resolution diatom census coupled with other proxy data from Laurentian Fan (LF) provides a detailed description of the last deglaciation, bringing new insight to that period by revealing directly the timing of sea-ice formation and melting. Cold events Heinrich Event 1 (H1) and the Younger Dryas (YD) were multiphase events. H1 (~16.8-15.7 cal kyr BP) was defined by a two-pulse release of icebergs promoting sea-ice formation. Melting of sea-ice after H1 corresponds to a cold and fresh anomaly that may have kept the Bølling colder than the Allerød. At ~13.6 cal kyr BP, a cooling trend culminated with sea-ice formation, marking the YD onset (~12.8 cal kyr BP). The decrease in sea-ice (~12.2 cal kyr BP) led to a YD second phase characterized by very cold winters. However, the contribution of warm water diatoms tends to increase at the same time and the YD gradual end (~11.6 cal kyr BP) contrasts with its abrupt end in Greenland ice cores. The YD cannot be regarded as an event triggered by a fresh water input through the Laurentian Channel since only one weak brief input nearly 1000 yrs after its onset is recorded. Very cold and cool conditions without ice mark the following Preboreal. A northward heat flux between 10.8 and 10.2 cal kyr BP was interrupted by the increased influence of coastal waters likely fed by inland melting. There was no further development of sea-ice or ice-drift then.
Resumo:
The early to mid-Holocene thermal optimum is a well-known feature in a wide variety of paleoclimate archives from the Northern Hemisphere. Reconstructed summer temperature anomalies from across northern Europe show a clear maximum around 6000 years before present (6 ka). For the marine realm, Holocene trends in sea-surface temperature reconstructions for the North Atlantic and Norwegian Sea do not exhibit a consistent pattern of early to mid- Holocene warmth. Sea-surface temperature records based on alkenones and diatoms generally show the existence of a warm early to mid-Holocene optimum. In contrast, several foraminifer and radiolarian based temperature records from the North Atlantic and Norwegian Sea show a cool mid- Holocene anomaly and a trend towards warmer temperatures in the late Holocene. In this paper, we revisit the foraminifer record from the Vøring Plateau in the Norwegian Sea. We also compare this record with published foraminifer based temperature reconstructions from the North Atlantic and with modelled (CCSM3) upper ocean temperatures. Model results indicate that while the seasonal summer warming of the seasurface was stronger during the mid-Holocene, sub-surface depths experienced a cooling. This hydrographic setting can explain the discrepancies between the Holocene trends exhibited by phytoplankton and zooplankton based temperature proxy records.
Resumo:
Surface and deep water circulation patterns in the eastern Indian Ocean during the Paleocene Epoch are inferred based on an integrated magnetobiostratigraphic and stable isotope investigation of Ocean Drilling Program Hole 761B, drilled on the Wombat Plateau. A combination of magnetostratigraphy, biostratigraphy and isotope stratigraphy demonstrates that numerous deep sea sites that have been considered to show continuous, or nearly continuous sedimentation through the Paleocene are punctuated by a series of hiatuses, some of which exceeding a duration of 1 Myr. Therefore, our study is based on a detailed temporal interpretation of the stratigraphic successions we used for paleoceanographic reconstructions. We compare detailed planktonic and benthic foraminiferal carbon and oxygen isotope records from Hole 761B with several temporally correlative records published from different oceanic provinces in order to distinguish between local and global patterns within the eastern Indian Ocean. Although Site 761 was situated at low latitudes during the Paleocene, its surface waters were predominantly influenced by circulation originating from the Southern Ocean as indicated by inferred cool sea surface temperatures and reduced surface to deep water temperature gradients. We suggest that deep waters in the eastern Indian Ocean were not directly fed by the Southern or Tethys Oceans. Rather, the more negative delta13C composition of the bottom waters recorded by benthic foraminifera implies the presence and/or active contribution of aged deep waters from the Pacific during this time, at least prior to ~60.2 Ma and subsequent to ~59.0 Ma. The Indian continent, Ninetyeast Ridge, Kerguelen Plateau and Broken Ridge may have played a significant role as submarine barriers to deep water circulation during the Paleocene.
Resumo:
A well-preserved, diverse sporomorph flora of over 60 species has been found in Cores 120-750B-12W through -14R from the Southern Kerguelen Plateau. Analysis of the flora indicates that the terrestrial sediments overlaying the basaltic basement are late Early Cretaceous in age. Ranges of the sporomorphs in other parts of Gondwana and the morphology and paucity of angiosperm pollen grains confine the age of this section to the early to possibly early middle Albian. The Albian palynomorph assemblages in Hole 750B are composed primarily of fern spores and podocarpaceous pollen, and show most similarity to those from southern Australia. Changes in the flora through time reflect the successional vegetation changes on barren volcanic islands, beginning with high percentages of colonizing ferns and maturing into conifer (podocarp) forests. The flora shows some signs of endemism, which may be a result of the isolated position of the Kerguelen Islands during the Early Cretaceous. This endemism is expressed by high percentages of a distinctive monosulcate pollen species Ashmoripollis woodywisei n.sp. of pteridosperm or cycadophytean origin, and by a thick-walled, monosulcate angiosperm pollen species of the genus Clavatipollenites. The climatic conditions were probably cool to temperate (mean annual temperature approximately 7°-12°C) and humid (annual rainfall >1000 mm), analogous to modern Podocarpus-dominated forests in New Zealand and in South American mountain regions.
Resumo:
Leg 87 investigated two sites in the Nankai Trough, off southeastern Japan, and one in the Japan Trench, off northeastern Japan. Several holes at the Nankai Trough sites penetrated mostly Quaternary interbedded sandy turbidites and hemipelagic mud. Foraminifers are common only in certain turbidite sands because both sites are at or just below the carbonate compensation depth. The planktonic assemblages from these sandy layers consist of mixed cool-temperate and warm-water species, and include both solution-resistant and solution-prone species. The benthic assemblages from these same layers are composed of mixtures of shelf to abyssal species. The northward-flowing Kuroshio is important in producing the mixed planktonic faunas, whereas turbidity currents are the primary agents in mixing benthic faunas and in the rapid burial of both planktonic and benthic foraminifers, which protects them from solution. Interbedded hemipelagic muds are barren or contain sparse faunas. Hole 582B penetrated through the trench-fill deposits into hemipelagic sediments that originated in the Shikoku Basin. These muds contain a dissolution facies of solution-resistant planktonic species, partially dissolved tests, and deep bathyal benthic species. Drilling at Site 584, on the landward midslope of the Japan Trench, penetrated a section of dominantly diatomaceous mudstone. This section contains a meager Pliocene calcareous fauna in its upper third and a nearly monospecific assemblage of Martinottiella communis in the lower two-thirds. Diatom biostratigraphy indicates that this change in assemblages occurs near the Miocene/Pliocene boundary. Similar biofacies changes are observed in neighboring sections drilled during Legs 56 and 57. The change from agglutinated to calcareous faunas is probably related to a relative drop in the carbonate compensation depth at the end of the Miocene.
Resumo:
During the early Pliocene warm period (~4.6-4.2 Ma) in the Eastern Equatorial Pacific upwelling region, sea surface temperatures were warm in comparison to modern conditions. Warm upwelling regions have global effects on the heat budget and atmospheric circulation, and are argued to have contributed to Pliocene warmth. Though warm upwelling regions could be explained by weak winds and/or a deep thermocline, the temporal and spatial evolution of the equatorial thermocline is poorly understood. Here we reconstruct temporal and spatial changes in subsurface temperature to monitor thermocline depth and show the thermocline was deeper during the early Pliocene warm period than it is today. We measured subsurface temperature records from Eastern Equatorial Pacific ODP transect Sites 848, 849, and 853 using Mg/Ca records from Globorotalia tumida, which has a depth habitat of ~50-100 m. In the early Pliocene, subsurface temperatures were ~4-5°C warmer than modern temperatures, indicating the thermocline was relatively deep. Subsurface temperatures steeply cooled ~2-3°C from 4.8 to 4.0 Ma and continued to cool an additional 2-3°C from 4.0 Ma to present. Compared to records from other regions, the data suggests the pronounced subsurface cooling between 4.8 and 4.0 Ma was a regional signal related to restriction of the Isthmus of Panama, while continued cooling from 4.0 Ma to present was likely related to global processes that changed global thermocline structure. Additionally, the spatial evolution of the equatorial thermocline along a N-S transect across ODP Sites 853, 849 and 848 suggests an intensification of the southeast trades from the Pliocene to present. Large-scale atmospheric and oceanographic circulation processes link high and low latitude climate through their influence on equatorial thermocline source water regions and consequently the equatorial thermocline. Through these low latitude/high latitude linkages, changes in the equatorial thermocline and thermocline source water played an important role in the transition from the warm Pliocene to the cold Pleistocene.
Resumo:
Quantitative analysis of upper Eocene-upper Oligocene calcareous nannofossil assemblages from five Ocean Drilling Program sites in the Atlantic and Indian Ocean sectors of the Southern Ocean reveals an abrupt increase in cool-water taxa at the top of magnetic Subchron C13R ca. 35.9 Ma, coincident with an enrichment of ~1? d18O in the planktonic foraminifers at these sites. The synchrony of the abrupt increase in cool-water taxa in the Southern Ocean renders this event a useful biostratigraphic datum at southern high latitudes. This earliest Oligocene cool-water taxa increase was the sharpest and largest during the late Eocene-late Oligocene interval and indicates a drop in surface-water temperature of more than 3°C in the Southern Ocean. This suggests that the earliest Oligocene d18O shift represents primarily a temperature signal; a small portion (~0.2?) is attributable to a global ice-volume increase.
Resumo:
Sediments from the ODP Site 1085A were studied to investigate the impacts of global cooling in the Middle and Late Miocene on the climate in Southwestern Africa. The size composition of the sediment was analysed emphasising the silt fraction. A comparison with the modern grain size distribution and suitable transport processes made it possible to assign specific transport processes to the grain size composition. Three processes are considered for transport of terrigeneous silt: while there was no evidence found for (1) transport by ocean currents, the analyses showed signals of (2) wind transport indicating dry conditions associated with a cool climate and (3) fluvial transport that points to humid and warm conditions. Three climatic phases were defined. The first phase from 13.8 to 11.8 Myr reveals a stable humid climate in Southwest Africa independent of the Antarctic glaciations. During the second phase from 11.8 to 10.4 Myr the regional climate cooled considerably but was not drier. Additionally, the climate during this phase reacted to the Antarctic glaciations. This cooling-trend continued during phase 3 from 10.4 to 9.0 Myr with a significant increase in dust input, pointing to overall drier conditions. However, fluvial transport still remained as the main source.
Resumo:
Sites 1085, 1086 and 1087 were drilled off South Africa during Ocean Drilling Program (ODP) Leg 175 to investigate the Benguela Current System. While previous studies have focused on reconstructing the Neogene palaeoceanographic and palaeoclimatic history of these sites, palynology has been largely ignored, except for the Late Pliocene and Quaternary. This study presents palynological data from the upper Middle Miocene to lower Upper Pliocene sediments in Holes 1085A, 1086A and 1087C that provide complementary information about the history of the area. Abundant and diverse marine palynomorphs (mainly dinoflagellate cysts), rare spores and pollen, and dispersed organic matter have been recovered. Multivariate statistical analysis of dispersed organic matter identified three palynofacies assemblages (A, B, C) in the most continuous hole (1085A), and they were defined primarily by amorphous organic matter (AOM), and to a lesser extent black debris, structured phytoclasts, degraded phytoclasts, and marine palynomorphs. Ecostratigraphic interpretation based on dinoflagellate cyst, spore-pollen and palynofacies data allowed us to identify several palaeoceanographic and palaeoclimatic signals. First, the late Middle Miocene was subtropical, and sediments contained the highest percentages of land-derived organic matter, even though they are rich in AOM (palynofacies assemblage A). Second, the Late Miocene was cool-temperate and characterized by periods of intensified upwelling, increase in productivity, abundant and diverse oceanic dinoflagellate cysts, and the highest percentages of AOM (palynofacies assemblage C). Third, the Early to early Late Pliocene was warm-temperate with some dry intervals (increase in grass pollen) and intensified upwelling. Fourth, the Neogene "carbonate crash" identified in other southern oceans was recognized in two palynofacies A samples in Hole 1085A that are nearly barren of dinoflagellate cysts: one Middle Miocene sample (590 mbsf, 13.62 Ma) and one Upper Miocene sample (355 mbsf, 6.5 Ma). Finally, the extremely low percentages of pollen suggest sparse vegetation on the adjacent landmass, and Namib desert conditions were already in existence during the late Middle Miocene.