973 resultados para chromosome painting
Resumo:
The bovine RPCI-42 BAC library was screened to construct a sequence-ready ~4 Mb single contig of 92 BAC clones on BTA 1q12. The contig covers the region between the genes KRTAP8P1 and CLIC6. This genomic segment in cattle is of special interest as it contains the dominant gene responsible for the hornless or polled phenotype in cattle. The construction of the BAC contig was initiated by screening the bovine BAC library with heterologous cDNA probes derived from 12 human genes of the syntenic region on HSA 21q22. Contig building was facilitated by BAC end sequencing and chromosome walking. During the construction of the contig, 165 BAC end sequences and 109 single-copy STS markers were generated. For comparative mapping of 25 HSA 21q22 genes, genomic PCR primers were designed from bovine EST sequences and the gene-associated STSs mapped on the contig. Furthermore, bovine BAC end sequence comparisons against the human genome sequence revealed significant matches to HSA 21q22 and allowed the in silico mapping of two new genes in cattle. In total, 31 orthologues of human genes located on HSA 21q22 were directly mapped within the bovine BAC contig, of which 16 genes have been cloned and mapped for the first time in cattle. In contrast to the existing comparative bovine-human RH maps of this region, these results provide a better alignment and reveal a completely conserved gene order in this 4 Mb segment between cattle, human and mouse. The mapping of known polled linked BTA 1q12 microsatellite markers allowed the integration of the physical contig map with existing linkage maps of this region and also determined the exact order of these markers for the first time. Our physical map and transcript map may be useful for positional cloning of the putative polled gene in cattle.
Resumo:
The mammalian glycinamide ribonucleotide formyltransferase (GART) genes encode a trifunctional polypeptide involved in the de novo purine biosynthesis. We isolated a bacterial artificial chromosome (BAC) clone containing the bovine GART gene and determined the complete DNA sequence of the BAC clone. Cloning and characterization of the bovine GART gene revealed that the bovine gene consists of 23 exons spanning approximately 27 kb. RT-PCR amplification of bovine GART in different organs showed the expression of two GART transcripts in cattle similar to human and mouse. The GART transcripts encode two proteins of 1010 and 433 amino acids, respectively. Eleven single nucleotide polymorphisms (SNPs) were detected in a mutation scan of 24 unrelated animals of three different cattle breeds, including one SNP that affects the amino acid sequence of GART. The chromosomal localization of the gene was determined by fluorescence in situ hybridization. Comparative genome analysis between cattle, human and mouse indicates that the chromosomal location of the bovine GART gene is in agreement with a previously published mapping report.
Resumo:
The hairpin structure at the 3' end of animal histone mRNAs controls histone RNA 3' processing, nucleocytoplasmic transport, translation and stability of histone mRNA. Functionally overlapping, if not identical, proteins binding to the histone RNA hairpin have been identified in nuclear and polysomal extracts. Our own results indicated that these hairpin binding proteins (HBPs) bind their target RNA as monomers and that the resulting ribonucleoprotein complexes are extremely stable. These features prompted us to select for HBP-encoding human cDNAs by RNA-mediated three-hybrid selection in Saccharomyces cerevesiae. Whole cell extract from one selected clone contained a Gal4 fusion protein that interacted with histone hairpin RNA in a sequence- and structure-specific manner similar to a fraction enriched for bovine HBP, indicating that the cDNA encoded HBP. DNA sequence analysis revealed that the coding sequence did not contain any known RNA binding motifs. The HBP gene is composed of eight exons covering 19.5 kb on the short arm of chromosome 4. Translation of the HBP open reading frame in vitro produced a 43 kDa protein with RNA binding specificity identical to murine or bovine HBP. In addition, recombinant HBP expressed in S. cerevisiae was functional in histone pre-mRNA processing, confirming that we have indeed identified the human HBP gene.
Resumo:
The U7 snRNA, together with both common and unique snRNP proteins, forms the U7 snRNP particle. This particle is a major component of the 3' processing machinery that converts histone pre-mRNA into mature mRNA in the eukaryotic nucleus. The genes for many snRNAs are present in multiple copies and often have many pseudogenes. Southern blot experiments using U7 oligonucleotide and gene probes have identified only one strongly hybridizing band and three weakly hybridizing bands in mouse genomic DNA. Previously, two laboratories isolated genomic clones encoding one functional U7 gene and three presumed pseudogenes. Since all the genes were isolated on separate, nonoverlapping genomic fragments, the four genes are not tightly clustered in the mouse genome. In this study, we use fluorescence in situ hybridization to determine the chromosomal locations of these clones and their possible linkage to histone loci. Two of the pseudogenes map to mouse Chromosome 1, but are many megabases apart, whereas the active U7 gene maps to Chromosome 6. Possible mechanisms for this localization pattern are discussed.
Resumo:
A novel staphylococcal cassette chromosome mec (SCCmec) composite island (SCCmecAI16-SCCczrAI16-CI) was identified in Staphylococcus pseudintermedius. Four integration site sequences for SCC subdivided the 60,734-bp island into 41,232-bp SCCmecAI16, 19,400-bp SCCczrAI16, and 102-bp SCC-likeAI16 elements. SCCmecAI16 represents a new combination of ccrA1B3 genes with a class A mec complex. SCCczrAI16 contains ccrA1B6 and genes related to restriction modification and heavy metal resistance. SCCmecAI16-SCCczrAI16-CI was found in methicillin-resistant S. pseudintermedius sequence type 112 (ST112) and ST111 isolated from dogs and veterinarians in Thailand.
Resumo:
A methicillin-resistant mecB-positive Macrococcus caseolyticus (strain KM45013) was isolated from the nares of a dog with rhinitis. It contained a novel 39-kb transposon-defective complete mecB-carrying staphylococcal cassette chromosome mec element (SCCmecKM45013). SCCmecKM45013 contained 49 coding sequences (CDSs), was integrated at the 3' end of the chromosomal orfX gene, and was delimited at both ends by imperfect direct repeats functioning as integration site sequences (ISSs). SCCmecKM45013 presented two discontinuous regions of homology (SCCmec coverage of 35%) to the chromosomal and transposon Tn6045-associated SCCmec-like element of M. caseolyticus JCSC7096: (i) the mec gene complex (98.8% identity) and (ii) the ccr-carrying segment (91.8% identity). The mec gene complex, located at the right junction of the cassette, also carried the β-lactamase gene blaZm (mecRm-mecIm-mecB-blaZm). SCCmecKM45013 contained two cassette chromosome recombinase genes, ccrAm2 and ccrBm2, which shared 94.3% and 96.6% DNA identity with those of the SCCmec-like element of JCSC7096 but shared less than 52% DNA identity with the staphylococcal ccrAB and ccrC genes. Three distinct extrachromosomal circularized elements (the entire SCCmecKM45013, ΨSCCmecKM45013 lacking the ccr genes, and SCCKM45013 lacking mecB) flanked by one ISS copy, as well as the chromosomal regions remaining after excision, were detected. An unconventional circularized structure carrying the mecB gene complex was associated with two extensive direct repeat regions, which enclosed two open reading frames (ORFs) (ORF46 and ORF51) flanking the chromosomal mecB-carrying gene complex. This study revealed M. caseolyticus as a potential disease-associated bacterium in dogs and also unveiled an SCCmec element carrying mecB not associated with Tn6045 in the genus Macrococcus.
Resumo:
BACKGROUND Newly diagnosed WHO grade II-III or any WHO grade recurrent meningioma exhibit an aggressive behavior and thus are considered as high- or intermediate risk tumors. Given the unsatisfactory rates of disease control and survival after primary or adjuvant radiation therapy, optimization of treatment strategies is needed. We investigated the potential of dose-painting intensity-modulated proton beam-therapy (IMPT) for intermediate- and high-risk meningioma. MATERIAL AND METHODS Imaging data from five patients undergoing proton beam-therapy were used. The dose-painting target was defined using [68]Ga-[1,4,7,10-tetraazacyclododecane tetraacetic acid]- d-Phe(1),Tyr(3)-octreotate ([68]Ga-DOTATATE)-positron emission tomography (PET) in target delineation. IMPT and photon intensity-modulated radiation therapy (IMRT) treatment plans were generated for each patient using an in-house developed treatment planning system (TPS) supporting spot-scanning technology and a commercial TPS, respectively. Doses of 66 Gy (2.2 Gy/fraction) and 54 Gy (1.8 Gy/fraction) were prescribed to the PET-based planning target volume (PTVPET) and the union of PET- and anatomical imaging-based PTV, respectively, in 30 fractions, using simultaneous integrated boost. RESULTS Dose coverage of the PTVsPET was equally good or slightly better in IMPT plans: dose inhomogeneity was 10 ± 3% in the IMPT plans vs. 13 ± 1% in the IMRT plans (p = 0.33). The brain Dmean and brainstem D50 were small in the IMPT plans: 26.5 ± 1.5 Gy(RBE) and 0.002 ± 0.0 Gy(RBE), respectively, vs. 29.5 ± 1.5 Gy (p = 0.001) and 7.5 ± 11.1 Gy (p = 0.02) for the IMRT plans, respectively. The doses delivered to the optic structures were also decreased with IMPT. CONCLUSIONS Dose-painting IMPT is technically feasible using currently available planning tools and resulted in dose conformity of the dose-painted target comparable to IMRT with a significant reduction of radiation dose delivered to the brain, brainstem and optic apparatus. Dose escalation with IMPT may improve tumor control and decrease radiation-induced toxicity.
Resumo:
Chromosomal fusions are common in normal and cancer cells and can produce aberrant gene products that promote transformation. The mechanisms driving these fusions are poorly understood, but recurrent fusions are widespread. This suggests an underlying mechanism, and some authors have proposed a possible role for RNA in this process. The unicellular eukaryote Oxytricha trifallax displays an exorbitant capacity for natural genome editing, when it rewrites its germline genome to form a somatic epigenome. This developmental process provides a powerful model system to directly test the influence of small noncoding RNAs on chromosome fusion events during somatic differentiation. Here we show that small RNAs are capable of inducing chromosome fusions in four distinct cases (out of four tested), including one fusion of three chromosomes. We further show that these RNA-mediated chromosome fusions are heritable over multiple sexual generations and that transmission of the acquired fusion is associated with endogenous production of novel piRNA molecules that target the fused junction. We also demonstrate the capacity of a long noncoding RNA (lncRNA) to induce chromosome fusion of two distal germline loci. These results underscore the ability of short-lived, aberrant RNAs to act as drivers of chromosome fusion events that can be stably transmitted to future generations.
Resumo:
The objective of this research has been to study the molecular basis for chromosome aberration formation. Predicated on a variety of data, Mitomycin C (MMC)-induced DNA damage has been postulated to cause the formation of chromatid breaks (and gaps) by preventing the replication of regions of the genome prior to mitosis. The basic protocol for these experiments involved treating synchronized Hela cells in G(,1)-phase with a 1 (mu)g/ml dose of MMC for one hour. After removing the drug, cells were then allowed to progress to mitosis and were harvested for analysis by selective detachment. Utilizing the alkaline elution assay for DNA damage, evidence was obtained to support the conclusion that Hela cells can progress through S-phase into mitosis with intact DNA-DNA interstrand crosslinks. A higher level of crosslinking was observed in those cells remaining in interphase compared to those able to reach mitosis at the time of analysis. Dual radioisotope labeling experiments revealed that, at this dose, these crosslinks were associated to the same extent with both parental and newly replicated DNA. This finding was shown not to be the result of a two-step crosslink formation mechanism in which crosslink levels increase with time after drug treatment. It was also shown not to be an artefact of the double-labeling protocol. Using neutral CsCl density gradient ultracentrifugation of mitotic cells containing BrdU-labeled newly replicated DNA, control cells exhibited one major peak at a heavy/light density. However, MMC-treated cells had this same major peak at the heavy/light density, in addition to another minor peak at a density characteristic for light/light DNA. This was interpreted as indicating either: (1) that some parental DNA had not been replicated in the MMC treated sample or; (2) that a recombination repair mechanism was operational. To distinguish between these two possibilities, flow cytometric DNA fluorescence (i.e., DNA content) measurements of MMC-treated and control cells were made. These studies revealed that the mitotic cells that had been treated with MMC while in G(,1)-phase displayed a 10-20% lower DNA content than untreated control cells when measured under conditions that neutralize chromosome condensation effects (i.e., hypotonic treatment). These measurements were made under conditions in which the binding of the drug, MMC, was shown not to interfere with the stoichiometry of the ethidium bromide-mithramycin stain. At the chromosome level, differential staining techniques were used in an attempt to visualize unreplicated regions of the genome, but staining indicative of large unreplicated regions was not observed. These results are best explained by a recombinogenic mechanism. A model consistent with these results has been proposed.^
Resumo:
Molecular mechanisms that underlie preleukemic myelodysplasia (MDS) and acute myelogenous leukemia (AML) are poorly understood. In MDS or AML with a refractory clinical course, more than 30% of patients have acquired interstitial or complete deletions of chromosome 5. The 5q13.3 chromosomal segment is commonly lost as the result of 5q deletion. Reciprocal and unbalanced translocations of 5q13.3 can also occur as sole anomalies associated with refractory AML or MDS. This study addresses the hypothesis that a critical gene at 5q13.3 functions either as a classical tumor suppressor or as a chromosomal translocation partner and contributes to leukemogenesis. ^ Previous studies from our laboratory delineated a critical region of loss to a 2.5–3.0Mb interval at 5q13.3 between microsatellite markers D5S672 and GATA-P18104. The critical region of loss was later resolved to an interval of approximately 2Mb between the markers D5S672 and D5S2029. I, then generated a long range physical map of yeast artificial chromosomes (YACs) and developed novel sequence tagged sites (STS). To enhance the resolution of this map, bacterial artificial chromosomes (BACs) were used to construct a triply linked contig across a 1 Mb interval. These BACs were used as probes for fluorescent in situ hybridization (FISH) on an AML cell line to define the 5q13.3 critical region. A 200kb BAC, 484a9, spans the translocation breakpoint in this cell line. A novel gene, SSDP2 (single stranded DNA binding protein), is disrupted at the breakpoint because its first four exons are encoded within 140kb of BAC 484a9. This finding suggests that SSDP2 is the critical gene at 5q13.3. ^ In addition, I made an observation that deletions of chromosome 5q13 co-segregate with loss of the chromosome 17p. In some cases the deletions result from unbalanced translocations between 5q13 and 17p13. It was confirmed that the TP53 gene is deleted in patients with 17p loss, and the remaining allele harbors somatic mutation. Thus, the genetic basis for the aggressive clinical course in AML and MDS may be caused by functional cooperation between deletion or disruption of the 5q13.3 critical gene and inactivation of TP53. ^