941 resultados para bubble train
Resumo:
The objective of this research was to develop a model to estimate future freeway pavement construction costs in Henan Province, China. A comprehensive set of factors contributing to the cost of freeway pavement construction were included in the model formulation. These factors comprehensively reflect the characteristics of region and topography and altitude variation, the cost of labour, material, and equipment, and time-related variables such as index numbers of labour prices, material prices and equipment prices. An Artificial Neural Network model using the Back-Propagation learning algorithm was developed to estimate the cost of freeway pavement construction. A total of 88 valid freeway cases were obtained from freeway construction projects let by the Henan Transportation Department during the period 1994−2007. Data from a random selection of 81 freeway cases were used to train the Neural Network model and the remaining data were used to test the performance of the Neural Network model. The tested model was used to predict freeway pavement construction costs in 2010 based on predictions of input values. In addition, this paper provides a suggested correction for the prediction of the value for the future freeway pavement construction costs. Since the change in future freeway pavement construction cost is affected by many factors, the predictions obtained by the proposed method, and therefore the model, will need to be tested once actual data are obtained.
Resumo:
In the last years, the trade-o between exibility and sup- port has become a leading issue in work ow technology. In this paper we show how an imperative modeling approach used to de ne stable and well-understood processes can be complemented by a modeling ap- proach that enables automatic process adaptation and exploits planning techniques to deal with environmental changes and exceptions that may occur during process execution. To this end, we designed and imple- mented a Custom Service that allows the Yawl execution environment to delegate the execution of subprocesses and activities to the SmartPM execution environment, which is able to automatically adapt a process to deal with emerging changes and exceptions. We demonstrate the fea- sibility and validity of the approach by showing the design and execution of an emergency management process de ned for train derailments.
Resumo:
Robust facial expression recognition (FER) under occluded face conditions is challenging. It requires robust algorithms of feature extraction and investigations into the effects of different types of occlusion on the recognition performance to gain insight. Previous FER studies in this area have been limited. They have spanned recovery strategies for loss of local texture information and testing limited to only a few types of occlusion and predominantly a matched train-test strategy. This paper proposes a robust approach that employs a Monte Carlo algorithm to extract a set of Gabor based part-face templates from gallery images and converts these templates into template match distance features. The resulting feature vectors are robust to occlusion because occluded parts are covered by some but not all of the random templates. The method is evaluated using facial images with occluded regions around the eyes and the mouth, randomly placed occlusion patches of different sizes, and near-realistic occlusion of eyes with clear and solid glasses. Both matched and mis-matched train and test strategies are adopted to analyze the effects of such occlusion. Overall recognition performance and the performance for each facial expression are investigated. Experimental results on the Cohn-Kanade and JAFFE databases demonstrate the high robustness and fast processing speed of our approach, and provide useful insight into the effects of occlusion on FER. The results on the parameter sensitivity demonstrate a certain level of robustness of the approach to changes in the orientation and scale of Gabor filters, the size of templates, and occlusions ratios. Performance comparisons with previous approaches show that the proposed method is more robust to occlusion with lower reductions in accuracy from occlusion of eyes or mouth.
Resumo:
Purpose Based on substitutes for leadership theory, the aim of this study is to examine followers' learning goal orientation as a moderator of relationships among transformational leadership, organizational citizenship behavior (OCB) and sales productivity. Design/methodology/approach Data came from 61 food and beverage attendants of a casino, and were analyzed using regression analyses. Findings Transformational leadership was positively related to both OCB and sales productivity. Learning goal orientation moderated the relationship between transformational leadership and OCB, such that transformational leadership was more strongly related to OCB among followers with a low learning goal orientation than among followers with a high learning goal orientation. Research limitations/implications Limitations of the study include the small sample size and cross-sectional research design. Practical implications Organizations could train supervisors to practice a transformational leadership style and to take followers' learning goal orientation into account. Originality/value The findings of this study suggest that, with regard to OCB, a high learning goal orientation of followers may act as a “substitute” for low levels of leaders' transformational leadership.
Resumo:
In spite of the extensive usage of continuous welded rails, a number of rail joints still exist in the track. Although a number of them exist as part of turnouts in the yards where the speed is not of concern, the Insultated Rail Joints (IRJs) that exist in ballasted tracks remain a source of significant impact loading. A portion of the dynamic load generated at the rail joints due to wheel passage is transmitted to the support system which leads to permanent settlements of the ballast layer with subsequent vertical misalignment of the sleepers around the rail joints. The vertical misalignment of the adjacent sleepers forms a source of high frequency dynamic load raisers causing significant maintenance work including localised grinding of railhead around the joint, re-alignment of the sleepers and/or ballast tamping or track component renewals/repairs. These localised maintenance activities often require manual inspections and disruptions to the train traffic loading to significant costs to the rail industry. Whilst a number of studies have modelled the effect of joints as dips, none have specifically attended to the effect of vertical misalignment of the sleepers on the dynamic response of rail joints. This paper presents a coupled finite element track model and rigid body track-vehicle interaction model through which the effects of vertical of sleepers on the increase in dynamic loads around the IRJ are studied. The finite element track model is employed to determine the generated dip from elastic deformations as well as the vertical displacement of sleepers around the joint. These data (dip and vertical misalignments) are then imported into the rigid body vehicle-track interaction model to calculate the dynamic loads.
Resumo:
The action per quod servitium amisit compensates an employer for the loss of an employee’s services, where such loss is caused due to the commission of a tort by a third party which injures the employee. Although not commonly pleaded, such actions often arise when employees are harmed due to transportation accidents. For example, where allowed, physical injury caused by the negligent driving of automobiles, and the psychiatric injury suffered by an engine driver upon averting a collision with a motorcyclist crossing before an oncoming train...
Resumo:
Background Family child care homes (FCCHs) provide child care to 1.9 million children in the U.S., but many do not meet established child care standards for healthy eating and physical activity. Purpose To determine the effects of a community-based train-the-trainer intervention on FCCHs policies and practices related to healthy eating and physical activity. Design Quasi-experimental design with replication in three independent cohorts of FCCHs. Setting/participants Registered FCCHs from 15 counties across Kansas participated in the Healthy Kansas Kids (HKK) program. Resource and referral agencies (RRAs) in each county recruited and enrolled between five and 15 child care providers in their service delivery area to participate in the program. The number of registered FCCHs participating in HKK in Years 1 (2006-2007); 2 (2007-2008); and 3 (2008-2009) of the program were 85, 64, and 87, respectively. A stratified random sample of registered FCCHs operating in Kansas (n=297) served as a normative comparison group. Interventions Child care trainers from each RRA completed a series of train-the-trainer workshops related to promotion of healthy eating and physical activity. FCCHs were subsequently guided through a four-step iterative process consisting of (1) self-evaluation; (2) goal setting; (3) developing an action plan; and (4) evaluating progress toward meeting goals. FCCHs also received U. S. Department of Agriculture resources related to healthy eating and physical activity. Main outcome measures Nutrition and Physical Activity Self-Assessment for Child Care (NAP SACC) self-assessment instrument (NAP SACC-SA). Analyses of outcome measures were conducted between 2008 and 2010. Results Healthy Kansas Kids FCCHs exhibited significant improvements in healthy eating (Delta=6.9%-7.1%) and physical activity (Delta=15.4%-19.2%) scores (p<0.05). Within each cohort, pre-intervention scores were not significantly different from the state average, whereas post-intervention scores were significantly higher than the state average. Conclusions Community-based train-the-trainer interventions to promote healthy eating and physical activity in FCCHs are feasible, sustainable, and effective.
Resumo:
Background Wearable monitors are increasingly being used to objectively monitor physical activity in research studies within the field of exercise science. Calibration and validation of these devices are vital to obtaining accurate data. This article is aimed primarily at the physical activity measurement specialist, although the end user who is conducting studies with these devices also may benefit from knowing about this topic. Best Practices Initially, wearable physical activity monitors should undergo unit calibration to ensure interinstrument reliability. The next step is to simultaneously collect both raw signal data (e.g., acceleration) from the wearable monitors and rates of energy expenditure, so that algorithms can be developed to convert the direct signals into energy expenditure. This process should use multiple wearable monitors and a large and diverse subject group and should include a wide range of physical activities commonly performed in daily life (from sedentary to vigorous). Future Directions New methods of calibration now use "pattern recognition" approaches to train the algorithms on various activities, and they provide estimates of energy expenditure that are much better than those previously available with the single-regression approach. Once a method of predicting energy expenditure has been established, the next step is to examine its predictive accuracy by cross-validating it in other populations. In this article, we attempt to summarize the best practices for calibration and validation of wearable physical activity monitors. Finally, we conclude with some ideas for future research ideas that will move the field of physical activity measurement forward.
Resumo:
One method of addressing the shortage of science and mathematics teachers is to train scientists and other science-related professionals to become teachers. Advocates argue that as discipline experts these career changers can relate the subject matter knowledge to various contexts and applications in teaching. In this paper, through interviews and classroom observations with a former scientist and her students, we examine how one career changer used her expertise in microbiology to teach microscopy. These data provided the basis for a description of the teacher’s instruction which was then analysed for components of domain knowledge for teaching. Consistent with the literature, the findings revealed that this career changer needed to develop her pedagogical knowledge. However, an interesting finding was that the teacher’s subject matter as a science teacher differed substantively from her knowledge as a scientist. This finding challenges the assumption that subject matter is readily transferable across professions and provides insight into how to better prepare and support career changers to transition from scientist to science teacher.
Resumo:
Differential settlement at the bridge approach between the deck and rail track on ground is often considered as a source of challenging technical and economical problem. This caused by the sudden stiffness changes between the bridge deck and the track on ground, and changes in soil stiffness of backfill and sub-grade with soil moisture content and loading history. To minimise the negative social and economic impacts due to poor performances of railway tracks at bridge transition zones, it is important, a special attention to be given at design, construction and maintenance stages. It is critically challenging to obtain an appropriate design solution for any given site condition and most of the existing conventional design approaches are unable to address the actual on-site behaviour due to their inherent assumptions of continuity and lack of clarifying of the local effects. An evaluation of existing design techniques is considered to estimate their contributions to a potential solution for bridge transition zones. This paper analyses five different approaches: the Chinese Standard, the European Standard with three different approaches, and the Australian approach. Each design approach is used to calculate the layer thicknesses, accounting critical design features such as the train speed, the axle load, the backfill subgrade condition, and the dynamic loading response. Considering correlation between track degradation and design parameters, this paper concludes that there is still a need of an optimised design approach for bridge transition zones.
Resumo:
In the current era of global economic instability, business and industry have already identified a widening gap between graduate skills and employability. An important element of this is the lack of entrepreneurial skills in graduates. This Teaching Fellowship investigated two sides of a story about entrepreneurial skills and their teaching. Senior players in the innovation commercialisation industry, a high profile entrepreneurial sector, were surveyed to gauge their needs and experiences of graduates they employ. International contexts of entrepreneurship education were investigated to explore how their teaching programs impart the skills of entrepreneurship. Such knowledge is an essential for the design of education programs that can deliver the entrepreneurial skills deemed important by industry for future sustainability. Two programs of entrepreneurship education are being implemented at QUT that draw on the best practice exemplars investigated during this Fellowship. The QUT Innovation Space (QIS) focuses on capturing the innovation and creativity of students, staff and others. The QIS is a physical and virtual meeting and networking space; a connected community enhancing the engagement of participants. The Q_Hatchery is still embryonic; but it is intended to be an innovation community that brings together nascent entrepreneurial businesses to collaborate, train and support each other. There is a niche between concept product and business incubator where an experiential learning environment for otherwise isolated ‘garage-at-home’ businesses could improve success rates. The QIS and the Q_Hatchery serve as living research laboratories to trial the concepts emerging from the skills survey. The survey of skills requirements of the innovation commercialisation industry has produced a large and high quality data set still being explored. Work experience as an employability factor has already emerged as an industry requirement that provides employee maturity. Exploratory factor analysis of the skills topics surveyed has led to a process-based conceptual model for teaching and learning higher-order entrepreneurial skills. Two foundational skills domains (Knowledge, Awareness) are proposed as prerequisites which allow individuals with a suite of early stage entrepreneurial and behavioural skills (Pre-leadership) to further leverage their careers into a leadership role in industry with development of skills around higher order elements of entrepreneurship, management in new business ventures and progressing winning technologies to market. The next stage of the analysis is to test the proposed model through structured equation modelling. Another factor that emerged quickly from the survey analysis broadens the generic concept of team skills currently voiced in Australian policy documents discussing the employability agenda. While there was recognition of the role of sharing, creating and using knowledge in a team-based interdisciplinary context, the adoption and adaptation of behaviours and attitudes of other team members of different disciplinary backgrounds (interprofessionalism) featured as an issue. Most undergraduates are taught and undertake teamwork in silos and, thus, seldom experience a true real-world interdisciplinary environment. Enhancing the entrepreneurial capacity of Australian industry is essential for the economic health of the country and can only be achieved by addressing the lack of entrepreneurial skills in graduates from the higher education system. This Fellowship has attempted to address this deficiency by identifying the skills requirements and providing frameworks for their teaching.
Resumo:
Level crossing risk continues to be a significant safety concern for the security of rail operations around the world. Over the last decade or so, a third of railway related fatalities occurred as a direct result of collisions between road and rail vehicles in Australia. Importantly, nearly half of these collisions occurred at railway level crossings with no active protection, such as flashing lights or boom barriers. Current practice is to upgrade level crossings that have no active protection. However, the total number of level crossings found across Australia exceed 23,500, and targeting the proportion of these that are considered high risk (e.g. public crossings with passive controls) would cost in excess of AU$3.25 billion based on equipment, installation and commissioning costs of warning devices that are currently type approved. Level crossing warning devices that are low-cost provide a potentially effective control for reducing risk; however, over the last decade, there have been significant barriers and legal issues in both Australia and the US that have foreshadowed their adoption. These devices are designed to have significantly lower lifecycle costs compared with traditional warning devices. They often make use of use of alternative technologies for train detection, wireless connectivity and solar energy supply. This paper describes the barriers that have been encountered for the adoption of these devices in Australia, including the challenges associated with: (1) determining requisite safety levels for such devices; (2) legal issues relating to duty of care obligations of railway operators; and (3) issues of Tort liability around the use of less than fail-safe equipment. This paper provides an overview of a comprehensive safety justification that was developed as part of a project funded by a collaborative rail research initiative established by the Australian government, and describes the conceptual framework and processes being used to justify its adoption. The paper provides a summary of key points from peer review and discusses prospective barriers that may need to be overcome for future adoption. A successful outcome from this process would result in the development of a guideline for decision-making, providing a precedence for adopting low-cost level crossing warning devices in other parts of the world. The framework described in this paper also provides relevance to the review and adoption of analogous technologies in rail and other safety critical industries.
Resumo:
Intelligent Transport System (ITS) technology is seen as a cost-effective way to increase the conspicuity of approaching trains and the effectiveness of train warnings at level crossings by providing an in-vehicle warning of an approaching train. The technology is often seen as a potential low-cost alternative to upgrading passive level crossings with traditional active warning systems (flashing lights and boom barriers). ITS platforms provide sensor, localization and dedicated short-range communication (DSRC) technologies to support cooperative applications such as collision avoidance for road vehicles. In recent years, in-vehicle warning systems based on ITS technology have been trialed at numerous locations around Australia, at level crossing sites with active and passive controls. While significant research has been conducted on the benefits of the technology in nominal operating modes, little research has focused on the effects of the failure modes, the human factors implications of unreliable warnings and the technology adoption process from the railway industry’s perspective. Many ITS technology suppliers originate from the road industry and often have limited awareness of the safety assurance requirements, operational requirements and legal obligations of railway operators. This paper aims to raise awareness of these issues and start a discussion on how such technology could be adopted. This paper will describe several ITS implementation cenarios and discuss failure modes, human factors considerations and the impact these scenarios are likely to have in terms of safety, railway safety assurance requirements and the practicability of meeting these requirements. The paper will identify the key obstacles impeding the adoption of ITS systems for the different implementation scenarios and a possible path forward towards the adoption of ITS technology.
Resumo:
The relationship between public transportation and home values has proven to be complex, with studies providing divergent findings. Using Victorian Valuer General Data for 2009, this paper applies a hedonic pricing approach to the Melbourne metropolitan housing market in order to estimate the impacts of proximity to a train station on residential property prices. The findings reveal a negative impact on dwelling price for those properties within 125 metres from a train station and a positive relationship between dwelling price and proximity for properties more than 125 metres away.
Resumo:
We examine the effect of a kinetic undercooling condition on the evolution of a free boundary in Hele--Shaw flow, in both bubble and channel geometries. We present analytical and numerical evidence that the bubble boundary is unstable and may develop one or more corners in finite time, for both expansion and contraction cases. This loss of regularity is interesting because it occurs regardless of whether the less viscous fluid is displacing the more viscous fluid, or vice versa. We show that small contracting bubbles are described to leading order by a well-studied geometric flow rule. Exact solutions to this asymptotic problem continue past the corner formation until the bubble contracts to a point as a slit in the limit. Lastly, we consider the evolving boundary with kinetic undercooling in a Saffman--Taylor channel geometry. The boundary may either form corners in finite time, or evolve to a single long finger travelling at constant speed, depending on the strength of kinetic undercooling. We demonstrate these two different behaviours numerically. For the travelling finger, we present results of a numerical solution method similar to that used to demonstrate the selection of discrete fingers by surface tension. With kinetic undercooling, a continuum of corner-free travelling fingers exists for any finger width above a critical value, which goes to zero as the kinetic undercooling vanishes. We have not been able to compute the discrete family of analytic solutions, predicted by previous asymptotic analysis, because the numerical scheme cannot distinguish between solutions characterised by analytic fingers and those which are corner-free but non-analytic.