954 resultados para bioassay in mice


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immune response expressed by IgG antibodies in BALB/c mice experimentally infected with Toxocara canis, was studied with the aim of verifying the possible in vivo cross-reactivity between antigens of T. canis and other parasites (Ascaris suum, Taenia crassiceps, Schistosoma mansoni, Strongyloides venezuelensis and Toxoplasma gondii). Experiments included three groups of mice: one infected only by T. canis, another with one of the other species of parasites and a third concomitantly infected with T. canis and the other species in question. Animals were bled by orbital plexus at 23, 38 and 70 days post infection (p.i.). Sera were analyzed for anti-Toxocara antibodies by ELISA and Immunoblotting, using excretion-secretion antigens (ES), obtained from culture of third-stage larvae of T. canis. For all experiments a control group comprised by ten non-infected mice was used. Only in the case of A. suum infection, in these experimental conditions, the occurrence of cross-reactivity with T. canis was observed. However, in the case of co-infection of T. canis - S. mansoni, T. canis - S. venezuelensis and T. canis - T. crassiceps the production of anti-Toxocara antibodies was found at levels significantly lower than those found in mice infected with T. canis only. Co-infection with S. mansoni or S. venezuelensis showed lower mortality rates compared to what occurred in the animals with single infections. Results obtained in mice infected with T. canis and T. gondii showed significant differences between the mean levels of the optical densities of animals infected with T. canis and concomitantly infected with the protozoan only in the 23rd day p.i.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate the implant of human adipose derived stem cells (ADSC) delivered in hyaluronic acid gel (HA), injected in the subcutaneous of athymic mice. METHODS: Control implants -HA plus culture media was injected in the subcutaneous of the left sub scapular area of 12 athymic mice. ADSC implants: HA plus ADSC suspended in culture media was injected in the subcutaneous, at the contra lateral area, of the same animals. With eight weeks, animals were sacrificed and the recovered implants were processed for extraction of genomic DNA, and histological study by hematoxilin-eosin staining and immunufluorescence using anti human vimentin and anti von Willebrand factor antibodies. RESULTS: Controls: Not visualized at the injection site. An amorphous substance was observed in hematoxilin-eosin stained sections. Human vimentin and anti von Willebrand factor were not detected. No human DNA was detected. ADSC implants - A plug was visible at the site of injection. Fusiform cells were observed in sections stained by hematoxilin- eosin and both human vimentin and anti von Willebrand factor were detected by immunofluorescence. The presence of human DNA was confirmed. CONCLUSION: The delivery of human adipose derived stem cells in preparations of hyaluronic acid assured cells engraftment at the site of injection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Endometrial decidualization and associated extracellular matrix (ECM) remodeling are critical events to the establishment of the maternal-fetal interface and successful pregnancy. Here, we investigated the impact of type 1 diabetes on these processes during early embryonic development, in order to contribute to the understanding of the maternal factors associated to diabetic embryopathies. Methods: Alloxan-induced diabetic Swiss female mice were bred after different periods of time to determine the effects of diabetes progression on the development of gestational complications. Furthermore, the analyses focused on decidual development as well as mRNA expression, protein deposition and ultrastructural organization of decidual ECM. Results: Decreased number of implantation sites and decidual dimensions were observed in the group mated 90-110 days after diabetes induction (D), but not in the 50-70D group. Picrosirius staining showed augmentation in the fibrillar collagen network in the 90e110D group and, following immunohistochemical examination, that this was associated with increase in types I and V collagens and decrease in type III collagen and collagen-associated proteoglycans biglycan and lumican. qPCR, however, demonstrated that only type I collagen mRNA levels were increased in the diabetic group. Alterations in the molecular ratio among distinct collagen types and proteoglycans were associated with abnormal collagen fibrillogenesis, analyzed by transmission electron microscopy. Conclusions: Our results support the concept that the development of pregnancy complications is directly related with duration of diabetes (progression of the disease), and that this is a consequence of both systemic factors (i.e. disturbed maternal endocrine-metabolic profile) and uterine factors, including impaired decidualization and ECM remodeling

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adolescence has been linked to greater risk-taking and novelty-seeking behavior and a higher prevalence of drug abuse and risk of relapse. Decreases in cyclic adenosine monophosphate response element binding protein (CREB) and phosphorylated CREB (pCREB) have been reported after repeated cocaine administration in animal models. We compared the behavioral effects of cocaine and abstinence in adolescent and adult mice and investigated possible age-related differences in CREB and pCREB levels. Adolescent and adult male Swiss mice received one daily injection of saline or cocaine (10 mg/kg, i.p.) for 8 days. On day 9, the mice received a saline injection to evaluate possible environmental conditioning. After 9 days of withdrawal, the mice were tested in the elevated plus maze to evaluate anxiety-like behavior. Twelve days after the last saline/cocaine injection, the mice received a challenge injection of either cocaine or saline, and locomotor activity was assessed. One hour after the last injection, the brains were extracted, and CREB and pCREB levels were evaluated using Western blot in the prefrontal cortex (PFC) and hippocampus. The cocaine-pretreated mice during adolescence exhibited a greater magnitude of the expression of behavioral sensitization and greater cocaine withdrawal-induced anxiety-like behavior compared with the control group. Significant increases in CREB levels in the PFC and hippocampus and pCREB in the hippocampus were observed in cocaine-abstinent animals compared with the animals treated with cocaine in adulthood. Interestingly, significant negative correlations were observed between cocaine sensitization and CREB levels in both regions. These results suggest that the behavioral and neurochemical consequences of psychoactive substances in a still-developing nervous system can be more severe than in an already mature nervous system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Intestinal ischemia/reperfusion (IR) injury is a serious and triggering event in the development of remote organ dysfunction, from which the lung is the main target. This condition is characterized by intense neutrophil recruitment, increased microvascular permeability. Intestinal IR is also responsible for induction of adult respiratory distress syndrome, the most serious and life-threatening form of acute lung injury. The purpose of this study was to investigate the effect of annexin-A1 protein as an endogenous regulator of the organ remote injury induced by intestinal ischemia/reperfusion. Male C57bl/6 mice were subjected to intestinal ischemia, induced by 45 min occlusion of the superior mesenteric artery, followed by reperfusion. RESULTS: The intestinal ischemia/reperfusion evoked a high intensity lung inflammation as indicated by the number of neutrophils as compared to control group. Treatment with annexin-A1 peptidomimetic Ac2-26, reduced the number of neutrophils in the lung tissue and increased its number in the blood vessels, which suggests a regulatory effect of the peptide Ac2-26 in the neutrophil migration. Moreover, the peptide Ac2-26 treatment was associated with higher levels of plasma IL-10. CONCLUSION: Our data suggest that the annexin-A1 peptidomimetic Ac2-26 treatment has a regulatory and protective effect in the intestinal ischemia/reperfusion by attenuation of the leukocyte migration to the lung and induction of the anti-inflammatory cytokine IL-10 release into the plasma. The anti-inflammatory action of annexin-A1 and its peptidomimetic described here may serve as a basis for future therapeutic approach in mitigating inflammatory processes due to intestinal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutamate acts as a neurotransmitter within the Central Nervous System (CNS) and modifies immune cell activity. In lymphocytes, NMDA glutamate receptors regulate intracellular calcium, the production of reactive oxygen species and cytokine synthesis. MK-801, a NMDA receptor open-channel blocker, inhibits calcium entry into mast cells, thereby preventing mast cell degranulation. Several lines of evidence have shown the involvement of NMDA glutamate receptors in amphetamine (AMPH)-induced effects. AMPH treatment has been reported to modify allergic lung inflammation. This study evaluated the effects of MK-801 (0.25mg/kg) and AMPH (2.0mg/kg), given alone or in combination, on allergic lung inflammation in mice and the possible involvement of NMDA receptors in this process. In OVA-sensitized and challenged mice, AMPH and MK-801 given alone decreased cellular migration into the lung, reduced IL-13 and IL10 levels in BAL supernatant, reduced ICAM-1 and L-selectin expression in granulocytes in the BAL and decreased mast cell degranulation. AMPH treatment also decreased IL-5 levels. When both drugs were administered, treatment with MK-801 reversed the decrease in the number of eosinophils and neutrophils induced by AMPH in the BAL of OVA-sensitized and challenged mice as well as the effects on the expression of L-selectin and ICAM-1 in granulocytes, the IL-10, IL-5 and IL-13 levels in BAL supernatants and increased mast cell degranulation. At the same time, treatment with MK-801, AMPH or with MK-801+AMPH increased corticosterone serum levels in allergic mice. These results are discussed in light of possible indirect effects of AMPH and MK-801 via endocrine outflow from the CNS (i.e., HPA-axis activity) to the periphery and/or as a consequence of the direct action of these drugs on immune cell activity, with emphasis given to mast cell participation in the allergic lung response of mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A positive relationship between obesity and asthma has been well documented. The AMP-activated protein kinase (AMPK) activator metformin reverses obesity-associated insulin resistance (IR) and inhibits different types of inflammatory responses. This study aimed to evaluate the effects of metformin on the exacerbation of allergic eosinophilic inflammation in obese mice. Male C57BL6/J mice were fed for 10 weeks with high-fat diet (HFD) to induce obesity. The cell infiltration and inflammatory markers in bronchoalveolar lavage (BAL) fluid and lung tissue were evaluated at 48 h after ovalbumin (OVA) challenge. HFD obese mice displayed peripheral IR that was fully reversed by metformin (300 mg/kg/day, two weeks). OVA-challenge resulted in higher influx of total cell and eosinophils in lung tissue of obese mice compared with lean group. As opposed, the cell number in BAL fluid of obese mice was reduced compared with lean group. Metformin significantly reduced the tissue eosinophil infiltration and prevented the reduction of cell counts in BAL fluid. In obese mice, greater levels of eotaxin, TNF-α and NOx, together with increased iNOS protein expression were observed, all of which were normalized by metformin. In addition, metformin nearly abrogated the binding of NF-κB subunit p65 to the iNOS promoter gene in lung tissue of obese mice. Lower levels of phosphorylated AMPK and its downstream target acetyl CoA carboxylase (ACC) were found in lung tissue of obese mice, which were restored by metformin. In separate experiments, the selective iNOS inhibitor aminoguanidine (20 mg/kg, 3 weeks) and the anti-TNF-α mAb (2 mg/kg) significantly attenuated the aggravation of eosinophilic inflammation in obese mice. In conclusion, metformin inhibits the TNF-α-induced inflammatory signaling and NF-κB-mediated iNOS expression in lung tissue of obese mice. Metformin may be a good pharmacological strategy to control the asthma exacerbation in obese individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNAi (RNA interference) is a powerful technology for sequence-specific targeting of mRNAs. This thesis was aimed at establishing conditions for conditional RNAi-mediated silencing first in vitro and subsequently also in transgenic mice. As a target the basic helix-loop-helix transcription factor encoding gene SCL (stem cell leukaemia also known as Tal-1 or TCL5) was used. SCL is a key regulator for haematopoietic development and ectopic expression of SCL is correlated with acute T-lymphoblastic leukaemias. Loss of SCL function studies demonstrated that ab initio deletion of SCL resulted in embryonic lethality around day E9 in gestation. To be able to conditionally inactivate SCL, RNAi technology was combined with the tetracycline-dependent regulatory system. This strategy allowed to exogenously control the induction of RNAi in a reversible fashion and consequently the generation of a completely switchable RNAi knockdown. First a suitable vector allowing for co-expression of tetracycline-controlled shRNAs (small hairpin RNAs) and constitutively active EGFP (enhanced green fluorescent protein) was generated. This novel vector, pRNAi-EGFP, was then evaluated for EGFP expression and tetracycline-mediated expression of shRNAs. Four sequences targeting different regions within the SCL mRNA were tested for their efficiency to specifically knockdown SCL. These experiments were performed in M1 murine leukaemia cells and subsequently in the HEK 293 cell line, expressing an engineered HA-tagged SCL protein. The second assay provided a solid experimental method for determining the efficiency of different SCL-siRNA knockdown constructs in tissue culture. Western blotting analyses revealed a down regulation of SCL protein for all four tested SCL-specific target sequences albeit with different knockdown efficiencies (between 25% and 100%). Furthermore, stringent tetracycline-dependent switchability of shRNA expression was confirmed by co-transfecting the SCL-specific pRNAi-EGFP vector (SCL-siRNA) together with the HA-tagged SCL expression plasmid into the HEK 293TR /T-REx cell line constitutively expressing the tetracycline repressor (TetR). These series of experiments demonstrated tight regulation of siRNA expression without background activity. To be able to control the SCL knockdown in vivo and especially to circumvent any possible embryonic lethality a transgenic mouse line with general expression of a tetracycline repressor was needed. Two alternative methods were used to generate TetR mice. The first approach was to co-inject the tetracycline-regulated RNAi vector together with a commercially available and here specifically modified T-REx expression vector (SCL-siRNA T-REx FRT LoxP mouse line). The second method involved the generation of a TetR expressor mouse line, which was then used for donating TetR-positive oocytes for pronuclear injection of the RNAi vector (SCL-siRNA T-REx mouse line). As expected, and in agreement with data from conditional Cre-controlled adult SCL knockout mice, post-transcriptional silencing of SCL by RNAi caused a shift in the maturation of red blood cell populations. This was shown in the bone marrow and peripheral blood by FACS analysis with the red blood cell-specific TER119 and CD71 markers which can be used to define erythrocyte differentiation (Lodish plot technique). In conclusion this study established conditions for effective SCL RNAi-mediated silencing in vitro and in vivo providing an important tool for further investigations into the role of SCL and, more generally, of its in vivo function in haematopoiesis and leukaemia. Most importantly, the here acquired knowledge will now allow the establishment of other completely conditional and reversible knockdown phenotypes in mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural killer (NK) cells play crucial roles in innate immunity and express CD39 (Ecto-nucleoside triphosphate diphosphohydrolase 1 [E-NTPD1]), a rate-limiting ectonucleotidase in the phosphohydrolysis of extracellular nucleotides to adenosine. We have studied the effects of CD39 gene deletion on NK cells in dictating outcomes after partial hepatic ischemia/reperfusion injury (IRI). We show in mice that gene deletion of CD39 is associated with marked decreases in phosphohydrolysis of adenosine triphosphate (ATP) and adenosine diphosphate to adenosine monophosphate on NK cells, thereby modulating the type-2 purinergic (P2) receptors demonstrated on these cells. We note that CD39-null mice are protected from acute vascular injury after single-lobe warm IRI, and, relative to control wild-type mice, display significantly less elevation of aminotransferases with less pronounced histopathological changes associated with IRI. Selective adoptive transfers of immune cells into Rag2/common gamma null mice (deficient in T cells, B cells, and NK/NKT cells) suggest that it is CD39 deletion on NK cells that provides end-organ protection, which is comparable to that seen in the absence of interferon gamma. Indeed, NK effector mechanisms such as interferon gamma secretion are inhibited by P2 receptor activation in vitro. Specifically, ATPgammaS (a nonhydrolyzable ATP analog) inhibits secretion of interferon gamma by NK cells in response to interleukin-12 and interleukin-18, providing a mechanistic link between CD39 deletion and altered cytokine secretion. CONCLUSION: We propose that CD39 deficiency and changes in P2 receptor activation abrogate secretion of interferon gamma by NK cells in response to inflammatory mediators, thereby limiting tissue damage mediated by these innate immune cells during IRI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metabolic disorders that predispose patients to NASH (non-alcoholic steatohepatitis) include insulin resistance and obesity. Repeated hypoxic events, such as occur in obstructive sleep apnoea syndrome, have been designated as a risk factor in the progression of liver disease in such patients, but the mechanism is unclear, in particular the role of hypoxia. Therefore we studied the influence of hypoxia on the development and progression of steatohepatitis in an experimental mouse model. Mice with a hepatocellular-specific deficiency in the Pten (phosphatase and tensin homologue deleted on chromosome 10) gene, a tumour suppressor, were exposed to a 10% O2 (hypoxic) or 21% O2 (control) atmosphere for 7 days. Haematocrit, AST (aspartate aminotransferase), glucose, triacylglycerols (triglycerides) and insulin tolerance were measured in blood. Histological lesions were quantified. Expression of genes involved in lipogenesis and mitochondrial beta-oxidation, as well as FOXO1 (forkhead box O1), hepcidin and CYP2E1 (cytochrome P450 2E1), were analysed by quantitative PCR. In the animals exposed to hypoxia, the haematocrit increased (60+/-3% compared with 50+/-2% in controls; P<0.01) and the ratio of liver weight/body weight increased (5.4+/-0.2% compared with 4.7+/-0.3% in the controls; P<0.01). Furthermore, in animals exposed to hypoxia, steatosis was more pronounced (P<0.01), and the NAS [NAFLD (non-alcoholic fatty liver disease) activity score] (8.3+/-2.4 compared with 2.3+/-10.7 in controls; P<0.01), serum AST, triacylglycerols and glucose were higher. Insulin sensitivity decreased in mice exposed to hypoxia relative to controls. The expression of the lipogenic genes SREBP-1c (sterol-regulatory-element-binding protein-1c), PPAR-gamma (peroxisome-proliferator-activated receptor-gamma), ACC1 (acetyl-CoA carboxylase 1) and ACC2 (acetyl-CoA carboxylase 2) increased significantly in mice exposed to hypoxia, whereas mitochondria beta-oxidation genes [PPAR-alpha (peroxisome-proliferator-activated receptor-alpha) and CPT-1 (carnitine palmitoyltransferase-1)] decreased significantly. In conclusion, the findings of the present study demonstrate that hypoxia alone aggravates and accelerates the progression of NASH by up-regulating the expression of lipogenic genes, by down-regulating genes involved in lipid metabolism and by decreasing insulin sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alveolar echinococcosis (AE) is a severe chronic hepatic parasitic disease currently emerging in central and eastern Europe. Untreated AE presents a high mortality (>90%) due to a severe hepatic destruction as a result of parasitic metacestode proliferation which behaves like a malignant tumor. Despite this severe course and outcome of disease, the genetic program that regulates the host response leading to organ damage as a consequence of hepatic alveolar echinococcosis is largely unknown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interactions of melatonin, a potent endogenous antioxidant, with reactive oxygen species generate several products that include N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) and N(1)-acetyl-5-methoxy-kynuramine (AMK). The physiological or pathological significance of AFMK/AMK formation during the process of melatonin metabolism in mammals has not been clarified. Using a metabolomic approach in the current study, the AFMK/AMK pathway was thoroughly investigated both in mice and humans. Unexpectedly, AFMK and AMK were not identified in the urine of humans nor in the urine, feces or tissues (including liver, brain, and eyes) in mice under the current experimental conditions. Metabolomic analysis did identify novel metabolites of AMK, i.e. hydroxy-AMK and glucuronide-conjugated hydroxy-AMK. These two newly identified metabolites were, however, not found in the urine of humans. In addition, oxidative stress induced by acetaminophen in the mouse model did not boost AFMK/AMK formation. These data suggest that AFMK/AMK formation is not a significant pathway of melatonin disposition in mice, even under conditions of oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic biology has shown that the metabolic behavior of mammalian cells can be altered by genetic devices such as epigenetic and hysteretic switches, timers and oscillators, biocomputers, hormone systems and heterologous metabolic shunts. To explore the potential of such devices for therapeutic strategies, we designed a synthetic mammalian circuit to maintain uric acid homeostasis in the bloodstream, disturbance of which is associated with tumor lysis syndrome and gout. This synthetic device consists of a modified Deinococcus radiodurans-derived protein that senses uric acids levels and triggers dose-dependent derepression of a secretion-engineered Aspergillus flavus urate oxidase that eliminates uric acid. In urate oxidase-deficient mice, which develop acute hyperuricemia, the synthetic circuit decreased blood urate concentration to stable sub-pathologic levels in a dose-dependent manner and reduced uric acid crystal deposits in the kidney. Synthetic gene-network devices providing self-sufficient control of pathologic metabolites represent molecular prostheses, which may foster advances in future gene- and cell-based therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. Moreover, it was recently reported that antagonist tracers were superior to agonist tracers for somatostatin and gastrin-releasing peptide receptor targeting of tumours. The present preclinical study determines therefore the value of an established GLP-1 receptor antagonist for the in vitro visualization of GLP-1 receptor-expressing tissues in mice and humans.