987 resultados para air stable doping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional modeling results show that the appearance of the long laminar plasma jet is less influenced by natural convection even as it is issuing into ambient air horizontally. However, plasma parameter distributions may deviate from axi-symmetry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation of the onset of Benard-Marangoni convection has been performed in a liquid layer of rectangular configuration. The critical temperature difference was measured via the detections of both temperature field pattern (IR-imaging) on the free surface and fluid convection (PIV) in the liquid layer. The critical temperature difference or the critical Marangoni number was given. The experiments were performed for a fixed depth of air layer and a changeable depth of the liquid layer, and then the influence of the thickness ratio of the air layer to liquid layer on the Marangoni instability was studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterization of air-water two-phase vertical flow in a 12 m flow loop with 1.5 m of vertical section is studied by using electrical resistance tomography (ERT). By applying a fast data collection to a dual-plane ERT sensor and an iterative image reconstruction algorithm, relevant information is gathered for implementation of flow characteristics, particularly for flow regime recognition. A cross-correlation method is also used to interpret the velocity distribution of the gas phase on the cross section. The paper demonstrates that ERT can now be deployed routinely for velocity measurements and this capability will increase as faster measurement systems evolve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation, jet length and flow-regime change characteristics of argon plasma issuing into ambient air have been experimentally examined. Different torch structures have been used in the tests. Laminar plasma jets can be generated within a rather wide range of working-gas flow rates, and an unsteady transitional flow state exists between the laminar and turbulent flow regimes. The high-temperature region length of the laminar plasma jet can be over an order longer than that of the turbulent plasma jet and increases with increasing argon flow rate or arc current, while the jet length of the turbulent plasma is less influenced by the generating parameters. The flow field of the plasma jet has very high radial gradients of plasma parameters, and a Reynolds number alone calculated in the ordinary manner may not adequately serve as a criterion for transition. The laminar plasma jet can have a higher velocity than that of an unsteady or turbulent jet. The long laminar plasma jet has good stiffness to withstand the impact of laterally injected cold gas and particulate matter. It could be used as a rather ideal object for fundamental studies and be applied to novel materials processing due to its attractive stable and adjustable properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling study is performed to reveal the special features of the entrainment of ambient air into subsonic laminar and turbulent argon plasma jets. Two different types of jet flows are considered, i.e., the argon plasma jet is impinging normally upon a flat substrate located in atmospheric air surroundings or is freely issuing into the ambient air. It is found that the existence of the substrate not only changes the plasma temperature, velocity and species concentration distributions in the near-substrate region, but also significantly enhances the mass flow rate of the ambient air entrained into the jet due to the additional contribution to the gas entrainment of the wall jet formed along the substrate surface. The fraction of the additional entrainment of the wall jet in the total entrained-air flow rate is especially high for the laminar impinging plasma jet and for the case with shorter substrate standoff distances. Similarly to the case of cold-gas free jets, the maximum mass flow-rate of ambient gas entrained into the turbulent impinging or free plasma jet is approximately directly proportional to the mass flow rate at the jet inlet. The maximum mass flow-rate of ambient gas entrained into the laminar impinging plasma jet slightly increases with increasing jet-inlet velocity but decreases with increasing jet-inlet temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large-eddy simulation with transitional structure function(TSF) subgrid model we previously proposed was performed to investigate the turbulent flow with thermal influence over an inhomogeneous canopy, which was represented as alternative large and small roughness elements. The aerodynamic and thermodynamic effects of the presence of a layer of large roughness elements were modelled by adding a drag term to the three-dimensional Navier-Stokes equations and a heat source/sink term to the scalar equation, respectively. The layer of small roughness elements was simply treated using the method as described in paper (Moeng 1984, J. Atmos Sci. 41, 2052-2062) for homogeneous rough surface. The horizontally averaged statistics such as mean vertical profiles of wind velocity, air temperature, et al., are in reasonable agreement with Gao et al.(1989, Boundary layer meteorol. 47, 349-377) field observation (homogeneous canopy). Not surprisingly, the calculated instantaneous velocity and temperature fields show that the roughness elements considerably changed the turbulent structure within the canopy. The adjustment of the mean vertical profiles of velocity and temperature was studied, which was found qualitatively comparable with Belcher et al. (2003, J Fluid Mech. 488, 369-398)'s theoretical results. The urban heat island(UHI) was investigated imposing heat source in the region of large roughness elements. An elevated inversion layer, a phenomenon often observed in the urban area (Sang et al., J Wind Eng. Ind. Aesodyn. 87, 243-258)'s was successfully simulated above the canopy. The cool island(CI) was also investigated imposing heat sink to simply model the evaporation of plant canopy. An inversion layer was found very stable and robust within the canopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doping in hydrogenated amorphous silicon occurs by a process of an ionised donor atom partially compensated by a charged dangling bond. The total energies of various dopant and dopant/bonding combinations are calculated for tetrahedral amorphous carbon. It is found that charged dangling bonds are less favoured because of the stronger Coulombic repulsion in ta-C. Instead the dopants can be compensated by weak bond states in the lower gap associated with odd-membered π-rings or odd-numbered π-chains. The effect is that the doping efficiency is low but there are not charged midgap recombination centres, to reduce photoconductivity or photoluminescence with doping, as occurs in a-Si:H.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper extends the air-gap element (AGE) to enable the modeling of flat air gaps. AGE is a macroelement originally proposed by Abdel-Razek et al.for modeling annular air gaps in electrical machines. The paper presents the theory of the new macroelement and explains its implementation within a time-stepped finite-element (FE) code. It validates the solution produced by the new macroelement by comparing it with that obtained by using an FE mesh with a discretized air gap. It then applies the model to determine the open-circuit electromotive force of an axial-flux permanent-magnet machine and compares the results with measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doping in hydrogenated amorphous silicon occurs by a process of an ionized donor atom partially compensated by a charged dangling bond. The total energies of various dopant and dopant/bonding combinations are calculated for tetrahedral amorphous carbon. It is found that charged dangling bonds are less favored because of the stronger Coulombic repulsion in ta-C. Instead the dopants can be compensated by weak bond states in the lower gap associated with odd-membered π-rings or odd-numbered π-chains. The effect is that the doping efficiency is low but there are not charged midgap recombination centres, to reduce photoconductivity or photoluminescence with doping, as occurs in a-Si:H.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent progress in the study of air-sea interface processes for momentum, heat, moisture and mass transfer are reviewed in the present article. Except for turbulent structure, we have analysed the other physical mechanisms occurring in the wave boundary layer, such as the roles of the sea surface state, droplets and bubbles due to wave breaking, which at least partly account for the existing discrepancies between theory and observations. The experiments, both over the ocean and in the laboratory, are described briefly. In conclusion, a few perspective trends in this area are suggested for further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-ignition tests of a model scramjet combustor were conducted by using parallel sonic injection of gaseous hydrogen from the base of a blade-like strut into a supersonic vitiated airstream. The range of stagnation pressure and temperature studied varied from 1.0 to 4.5 MPa and from 1300 to 2200 K, respectively. Experimental results show that the self-ignition limit, in terms of either global or local quantities of pressure and temperature, exhibits a nonmonotonic behavior resembling the classical homogeneous explosion limit of the hydrogen-oxygen system. Specifically, for a given temperature, increasing pressure from a low value can render a nonignitable mixture to first become ignitable, then nonignitable again, This correspondence shows that, despite the globally supersonic nonpremixed configuration studied herein, ignition is strongly influenced by the intricate chemical reaction mechanism and thereby exhibits the homogeneous explosion character. Consequently, self-ignition criteria based on a global reaction rate approximating the complex chemistry are inadequate. An auxiliary computational study on counterflow ignition was also conducted to systematically investigate the contamination effects of vitiated air. Results indicate that the net contamination effects for the present experimental data are expected to be substantially smaller than contributions from the individual contamination species because of the counterbalancing influences of the H2O-inhibition and NO-promotion reactions in effecting ignition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

H-2 and O-2 multiplex coherent anti-stokes Raman spectroscopy (CARS) employing a single dye laser has been explored to simultaneously determine the temperature and concentrations of H-2 and O-2 in a hydrogen-fueled supersonic combustor. Systematic calibrations were performed through a well-characterized H-2/air premixed flat-flame burner. In particular, temperature measurement was accomplished using the intensity ratio of the H-2 S(5) and S(6) rotational lines, whereas extraction of the H-2 and O-2 concentrations was obtained from the H-2 S(6) and O-2 Q-branch, respectively. Details of the calibration procedure and data reduction are discussed. Quantification of the supersonic mixing and combustion characteristics applying the present technique has been demonstrated to be feasible. The associated detection limits as well as possible improvements are also identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-field properties of polycrystalline superconducting TlBaCaCuO films fabricated by the incorporation of thallium vapour into air-atomised BaCaCuO precursors are described. Thick films with Tc values in the range 106-111 K have been prepared on polycrystalline yttria-stabilised zirconia substrates. The surface morphology, crystal structure and composition of the films are related to their high-field transport and magnetisation properties. Typical 10 mm × 9 mm films show Jc values > 1×104 A/cm2 at 77 K (0 T). The best film has a Jc=1.3×104 A/cm2 (Ic=3.6 A) at 77 K (0 T). Films prepared on 26 mm×9 mm substrates show typical large-area Jc values > 0.5×104 A/cm2 (77 K, 0 T). A square planar specimen of dimensions 4.3 mm ×4.3 mm exhibited magnetisation Jc values=1.2×105 A/cm2 at 4.2 K (0.1 T), 9.3×104 A/cm2 at 10 K (0.1 T), 3.3×104 A/ cm2 at 4 K (8 T), and 1.6×104 A/cm2 at 10 K (8 T). © 1994.