921 resultados para Web data
Resumo:
The purpose of this study was to explore the relationship between faculty perceptions, selected demographics, implementation of elements of transactional distance theory and online web-based course completion rates. This theory posits that the high transactional distance of online courses makes it difficult for students to complete these courses successfully; too often this is associated with low completion rates. Faculty members play an indispensable role in course design, whether online or face-to-face. They also influence course delivery format from design through implementation and ultimately to how students will experience the course. This study used transactional distance theory as the conceptual framework to examine the relationship between teaching and learning strategies used by faculty members to help students complete online courses. Faculty members' sex, number of years teaching online at the college, and their online course completion rates were considered. A researcher-developed survey was used to collect data from 348 faculty members who teach online at two prominent colleges in the southeastern part of United States. An exploratory factor analysis resulted in six factors related to transactional distance theory. The factors accounted for slightly over 65% of the variance of transactional distance scores as measured by the survey instrument. Results provided support for Moore's (1993) theory of transactional distance. Female faculty members scored higher in all the factors of transactional distance theory when compared to men. Faculty number of years teaching online at the college level correlated significantly with all the elements of transactional distance theory. Regression analysis was used to determine that two of the factors, instructor interface and instructor-learner interaction, accounted for 12% of the variance in student online course completion rates. In conclusion, of the six factors found, the two with the highest percentage scores were instructor interface and instructor-learner interaction. This finding, while in alignment with the literature concerning the dialogue element of transactional distance theory, brings a special interest to the importance of instructor interface as a factor. Surprisingly, based on the reviewed literature on transactional distance theory, faculty perceptions concerning learner-learner interaction was not an important factor and there was no learner-content interaction factor.
Resumo:
Stable isotope analysis has become a standard ecological tool for elucidating feeding relationships of organisms and determining food web structure and connectivity. There remain important questions concerning rates at which stable isotope values are incorporated into tissues (turnover rates) and the change in isotope value between a tissue and a food source (discrimination values). These gaps in our understanding necessitate experimental studies to adequately interpret field data. Tissue turnover rates and discrimination values vary among species and have been investigated in a broad array of taxa. However, little attention has been paid to ectothermic top predators in this regard. We quantified the turnover rates and discrimination values for three tissues (scutes, red blood cells, and plasma) in American alligators (Alligator mississippiensis). Plasma turned over faster than scutes or red blood cells, but turnover rates of all three tissues were very slow in comparison to those in endothermic species. Alligator δ15N discrimination values were surprisingly low in comparison to those of other top predators and varied between experimental and control alligators. The variability of δ15N discrimination values highlights the difficulties in using δ15N to assign absolute and possibly even relative trophic levels in field studies. Our results suggest that interpreting stable isotope data based on parameter estimates from other species can be problematic and that large ectothermic tetrapod tissues may be characterized by unique stable isotope dynamics relative to species occupying lower trophic levels and endothermic tetrapods.
Resumo:
The software product line engineering brings advantages when compared with the traditional software development regarding the mass customization of the system components. However, there are scenarios that to maintain separated clones of a software system seems to be an easier and more flexible approach to manage their variabilities of a software product line. This dissertation evaluates qualitatively an approach that aims to support the reconciliation of functionalities between cloned systems. The analyzed approach is based on mining data about the issues and source code of evolved cloned web systems. The next step is to process the merge conflicts collected by the approach and not indicated by traditional control version systems to identify potential integration problems from the cloned software systems. The results of the study show the feasibility of the approach to perform a systematic characterization and analysis of merge conflicts for large-scale web-based systems.
Resumo:
La tesi presenta uno studio della libreria grafica per web D3, sviluppata in javascript, e ne presenta una catalogazione dei grafici implementati e reperibili sul web. Lo scopo è quello di valutare la libreria e studiarne i pregi e difetti per capire se sia opportuno utilizzarla nell'ambito di un progetto Europeo. Per fare questo vengono studiati i metodi di classificazione dei grafici presenti in letteratura e viene esposto e descritto lo stato dell'arte del data visualization. Viene poi descritto il metodo di classificazione proposto dal team di progettazione e catalogata la galleria di grafici presente sul sito della libreria D3. Infine viene presentato e studiato in maniera formale un algoritmo per selezionare un grafico in base alle esigenze dell'utente.
Resumo:
Con l’avvento di Internet, il numero di utenti con un effettivo accesso alla rete e la possibilità di condividere informazioni con tutto il mondo è, negli anni, in continua crescita. Con l’introduzione dei social media, in aggiunta, gli utenti sono portati a trasferire sul web una grande quantità di informazioni personali mettendoli a disposizione delle varie aziende. Inoltre, il mondo dell’Internet Of Things, grazie al quale i sensori e le macchine risultano essere agenti sulla rete, permette di avere, per ogni utente, un numero maggiore di dispositivi, direttamente collegati tra loro e alla rete globale. Proporzionalmente a questi fattori anche la mole di dati che vengono generati e immagazzinati sta aumentando in maniera vertiginosa dando luogo alla nascita di un nuovo concetto: i Big Data. Nasce, di conseguenza, la necessità di far ricorso a nuovi strumenti che possano sfruttare la potenza di calcolo oggi offerta dalle architetture più complesse che comprendono, sotto un unico sistema, un insieme di host utili per l’analisi. A tal merito, una quantità di dati così vasta, routine se si parla di Big Data, aggiunta ad una velocità di trasmissione e trasferimento altrettanto alta, rende la memorizzazione dei dati malagevole, tanto meno se le tecniche di storage risultano essere i tradizionali DBMS. Una soluzione relazionale classica, infatti, permetterebbe di processare dati solo su richiesta, producendo ritardi, significative latenze e inevitabile perdita di frazioni di dataset. Occorre, perciò, far ricorso a nuove tecnologie e strumenti consoni a esigenze diverse dalla classica analisi batch. In particolare, è stato preso in considerazione, come argomento di questa tesi, il Data Stream Processing progettando e prototipando un sistema bastato su Apache Storm scegliendo, come campo di applicazione, la cyber security.
Resumo:
Acknowledgements The research described here is supported by the award made by the RCUK Digital Economy programme to the dot.rural Digital Economy Hub; award reference: EP/G066051/1
Resumo:
Postprint
Resumo:
Our ability to project the impact of global change on marine ecosystem is limited by our poor understanding on how to predict species sensitivity. For example, the impact of ocean acidification is highly species-specific, even in closely related taxa. The aim of this study was to test the hypothesis that the tolerance range of a given species to decreased pH corresponds to their natural range of exposure. Larvae of the green sea urchin Strongylocentrotus droebachiensis were cultured from fertilization to metamorphic competence (29 days) under a wide range of pH (from pHT = 8.0/pCO2 ~ 480 ?atm to pHT = 6.5/pCO2 ~ 20 000 ?atm) covering present (from pHT 8.7 to 7.6), projected near-future variability (from pHT 8.3 to 7.2) and beyond. Decreasing pH impacted all tested parameters (mortality, symmetry, growth, morphometry and respiration). Development of normal, although showing morphological plasticity, swimming larvae was possible as low as pHT >= 7.0. Within that range, decreasing pH increased mortality and asymmetry and decreased body length (BL) growth rate. Larvae raised at lowered pH and with similar BL had shorter arms and a wider body. Relative to a given BL, respiration rates and stomach volume both increased with decreasing pH suggesting changes in energy budget. At the lowest pHs (pHT <= 6.5), all the tested parameters were strongly negatively affected and no larva survived past 13 days post fertilization. In conclusion, sea urchin larvae appeared to be highly plastic when exposed to decreased pH until a physiological tipping point at pHT = 7.0. However, this plasticity was associated with direct (increased mortality) and indirect (decreased growth) consequences for fitness.
Resumo:
With the quick advance of web service technologies, end-users can conduct various on-line tasks, such as shopping on-line. Usually, end-users compose a set of services to accomplish a task, and need to enter values to services to invoke the composite services. Quite often, users re-visit websites and use services to perform re-occurring tasks. The users are required to enter the same information into various web services to accomplish such re-occurring tasks. However, repetitively typing the same information into services is a tedious job for end-users. It can negatively impact user experience when an end-user needs to type the re-occurring information repetitively into web services. Recent studies have proposed several approaches to help users fill in values to services automatically. However, prior studies mainly suffer the following drawbacks: (1) limited support of collecting and analyzing user inputs; (2) poor accuracy of filling values to services; (3) not designed for service composition. To overcome the aforementioned drawbacks, we need maximize the reuse of previous user inputs across services and end-users. In this thesis, we introduce our approaches that prevent end-users from entering the same information into repetitive on-line tasks. More specifically, we improve the process of filling out services in the following 4 aspects: First, we investigate the characteristics of input parameters. We propose an ontology-based approach to automatically categorize parameters and fill values to the categorized input parameters. Second, we propose a comprehensive framework that leverages user contexts and usage patterns into the process of filling values to services. Third, we propose an approach for maximizing the value propagation among services and end-users by linking a set of semantically related parameters together and similar end-users. Last, we propose a ranking-based framework that ranks a list of previous user inputs for an input parameter to save a user from unnecessary data entries. Our framework learns and analyzes interactions of user inputs and input parameters to rank user inputs for input parameters under different contexts.
Resumo:
The need for continuous recording rain gauges makes it difficult to determine the rainfall erosivity factor (R-factor) of the (R)USLE model in areas without good temporal data coverage. In mainland Spain, the Nature Conservation Institute (ICONA) determined the R-factor at few selected pluviographs, so simple estimates of the R-factor are definitely of great interest. The objectives of this study were: (1) to identify a readily available estimate of the R-factor for mainland Spain; (2) to discuss the applicability of a single (global) estimate based on analysis of regional results; (3) to evaluate the effect of record length on estimate precision and accuracy; and (4) to validate an available regression model developed by ICONA. Four estimators based on monthly precipitation were computed at 74 rainfall stations throughout mainland Spain. The regression analysis conducted at a global level clearly showed that modified Fournier index (MFI) ranked first among all assessed indexes. Applicability of this preliminary global model across mainland Spain was evaluated by analyzing regression results obtained at a regional level. It was found that three contiguous regions of eastern Spain (Catalonia, Valencian Community and Murcia) could have a different rainfall erosivity pattern, so a new regression analysis was conducted by dividing mainland Spain into two areas: Eastern Spain and plateau-lowland area. A comparative analysis concluded that the bi-areal regression model based on MFI for a 10-year record length provided a simple, precise and accurate estimate of the R-factor in mainland Spain. Finally, validation of the regression model proposed by ICONA showed that R-ICONA index overpredicted the R-factor by approximately 19%.
Resumo:
BACKGROUND: The neonatal and pediatric antimicrobial point prevalence survey (PPS) of the Antibiotic Resistance and Prescribing in European Children project (http://www.arpecproject.eu/) aims to standardize a method for surveillance of antimicrobial use in children and neonates admitted to the hospital within Europe. This article describes the audit criteria used and reports overall country-specific proportions of antimicrobial use. An analytical review presents methodologies on antimicrobial use.
METHODS: A 1-day PPS on antimicrobial use in hospitalized children was organized in September 2011, using a previously validated and standardized method. The survey included all inpatient pediatric and neonatal beds and identified all children receiving an antimicrobial treatment on the day of survey. Mandatory data were age, gender, (birth) weight, underlying diagnosis, antimicrobial agent, dose and indication for treatment. Data were entered through a web-based system for data-entry and reporting, based on the WebPPS program developed for the European Surveillance of Antimicrobial Consumption project.
RESULTS: There were 2760 and 1565 pediatric versus 1154 and 589 neonatal inpatients reported among 50 European (n = 14 countries) and 23 non-European hospitals (n = 9 countries), respectively. Overall, antibiotic pediatric and neonatal use was significantly higher in non-European (43.8%; 95% confidence interval [CI]: 41.3-46.3% and 39.4%; 95% CI: 35.5-43.4%) compared with that in European hospitals (35.4; 95% CI: 33.6-37.2% and 21.8%; 95% CI: 19.4-24.2%). Proportions of antibiotic use were highest in hematology/oncology wards (61.3%; 95% CI: 56.2-66.4%) and pediatric intensive care units (55.8%; 95% CI: 50.3-61.3%).
CONCLUSIONS: An Antibiotic Resistance and Prescribing in European Children standardized web-based method for a 1-day PPS was successfully developed and conducted in 73 hospitals worldwide. It offers a simple, feasible and sustainable way of data collection that can be used globally.
Resumo:
The generation of heterogeneous big data sources with ever increasing volumes, velocities and veracities over the he last few years has inspired the data science and research community to address the challenge of extracting knowledge form big data. Such a wealth of generated data across the board can be intelligently exploited to advance our knowledge about our environment, public health, critical infrastructure and security. In recent years we have developed generic approaches to process such big data at multiple levels for advancing decision-support. It specifically concerns data processing with semantic harmonisation, low level fusion, analytics, knowledge modelling with high level fusion and reasoning. Such approaches will be introduced and presented in context of the TRIDEC project results on critical oil and gas industry drilling operations and also the ongoing large eVacuate project on critical crowd behaviour detection in confined spaces.
Resumo:
Abstract: Decision support systems have been widely used for years in companies to gain insights from internal data, thus making successful decisions. Lately, thanks to the increasing availability of open data, these systems are also integrating open data to enrich decision making process with external data. On the other hand, within an open-data scenario, decision support systems can be also useful to decide which data should be opened, not only by considering technical or legal constraints, but other requirements, such as "reusing potential" of data. In this talk, we focus on both issues: (i) open data for decision making, and (ii) decision making for opening data. We will first briefly comment some research problems regarding using open data for decision making. Then, we will give an outline of a novel decision-making approach (based on how open data is being actually used in open-source projects hosted in Github) for supporting open data publication. Bio of the speaker: Jose-Norberto Mazón holds a PhD from the University of Alicante (Spain). He is head of the "Cátedra Telefónica" on Big Data and coordinator of the Computing degree at the University of Alicante. He is also member of the WaKe research group at the University of Alicante. His research work focuses on open data management, data integration and business intelligence within "big data" scenarios, and their application to the tourism domain (smart tourism destinations). He has published his research in international journals, such as Decision Support Systems, Information Sciences, Data & Knowledge Engineering or ACM Transaction on the Web. Finally, he is involved in the open data project in the University of Alicante, including its open data portal at http://datos.ua.es
Resumo:
Abstract Massive Open Online Courses (MOOCs) generate enormous amounts of data. The University of Southampton has run and is running dozens of MOOC instances. The vast amount of data resulting from our MOOCs can provide highly valuable information to all parties involved in the creation and delivery of these courses. However, analysing and visualising such data is a task that not all educators have the time or skills to undertake. The recently developed MOOC Dashboard is a tool aimed at bridging such a gap: it provides reports and visualisations based on the data generated by learners in MOOCs. Speakers Manuel Leon is currently a Lecturer in Online Teaching and Learning in the Institute for Learning Innovation and Development (ILIaD). Adriana Wilde is a Teaching Fellow in Electronics and Computer Science, with research interests in MOOCs and Learning Analytics. Darron Tang (4th Year BEng Computer Science) and Jasmine Cheng (BSc Mathematics & Actuarial Science and starting MSc Data Science shortly) have been working as interns over this Summer (2016) as have been developing the MOOC Dashboard.
Resumo:
Provenance is a record that describes the people, institutions, entities, and activities, involved in producing, influencing, or delivering a piece of data or a thing in the world. Some 10 years after beginning research on the topic of provenance, I co-chaired the provenance working group at the World Wide Web Consortium. The working group published the PROV standard for provenance in 2013. In this talk, I will present some use cases for provenance, the PROV standard and some flagship examples of adoption. I will then move on to our current research area aiming to exploit provenance, in the context of the Sociam, SmartSociety, ORCHID projects. Doing so, I will present techniques to deal with large scale provenance, to build predictive models based on provenance, and to analyse provenance.