927 resultados para Time correlation function
Resumo:
The Lorca basin is one of the Neogene basins OS South Eastern Spain. The infilling Tortonian-Messinian deposits are mainly composed OS marls and reach up to 1,200 m in thickness. A biostratigraphic survey OS these deposits, assisted by the determination OS the magnetic polarity reversal pattern Sor most OS these deposits (900 m), has enabled the Tortonian-Messinian chronostratigraphy to be precised. The close sampling space for biostratigraphic determination has enabled the accurate location OS Sour main biostratigraphic events than can be correlated with charactenstic events of the Mediterranean biostratigraphic Zones. In addition, the location OS the TortonianNessinian boundary has been accurately placed at some 150 m below the main gypsurn unit outcropping in the basin. The integrated bio-magnetostratigraphic data fiom the studied section allows a tentative interpretation OS the identified magnetozones. Thus, a correlation to the Geomagnetic Polarity Time Scale is presented for more than 900 m of pre-evaporite Miocene stratigraphic succession fiom the Lorca basin. Moreover, about 15' OS anticlockwise rotation has been detected. Its significance is evaluated in the basin geodynamic framework.
Resumo:
Muscular function of the neck region may be of importance for the etiology of headache, especially of tension-type headache. However, very few data exist on the association of neck muscle function with different types of headache in adolescents. The main aim of the study was to examine the association of neck muscle function with adolescent headache. The associations between leisure time activities, endurance strength of the upper extremities (UE endurance) and mobility of the neck-shoulder region and adolescent headache were studied. In addition, the associations of force production, EMG/force ratio, co-activation and fatigue characteristics, and cross-sectional area (CSA) of neck muscles with adolescent headache were studied. The study is part of a population-based cohort study of 12-year-old children with and without headache. The study had five phases (years 1998-2003). At the age of 13 years, a sample of 183 adolescents (183/311) participated in endurance strength and mobility measurements of the neck-shoulder region. In addition, the type and level of physical and other leisure activity were elicited with open and structured questions. At the age of 17 years, a random sample of 89 adolescents (89/202) participated in force and EMG measurements of the neck-shoulder muscles. In addition, at the age of 17 years, a sample of 65 adolescents (65/89) participated in CSA measurements of the neck muscles. At the age of 13 years, intensive participation in overall sports activity was associated with migraine. Frequent computer use was associated both with migraine and tension-type headache. The type of sports or other leisure activity classified them on the basis of body loading was not associated with headache type. In girls, low UE endurance of both sides, and low cervical rotation of the dominant side, were associated with tension-type headache, and low UE endurance of non-dominant side with migraine. In boys, no associations occurred between UE endurance and mobility variables and headache types. At the age of 17 years, in girls, high EMG/force ratios between the EMG of the left agonist sternocleidomastoid muscle (SCM) and maximal neck flexion and neck rotation force to the right side as well as high co-activation of right antagonist cervical erector spinae (CES) muscles during maximal neck flexion force were associated with migraine-type headache. In girls, neck force production was not associated with headache types but low left shoulder flexion force was associated with tension-type headache. In boys, no associations were found between EMG and force variables and headache. Increased SCM muscles fatigue of both sides was associated with tension-type headache. In boys, the small CSA of the right SCM muscle and, in girls, of combined right SCM and scalenus muscles was associated with tension-type headache. Similarly, in boys, the large CSA of the right SCM muscle, of the combined right SCM and scalenus muscles, of the left semispinalis capitis muscle, of the combined left semispinalis and splenius muscles was associated with migraine. No other differences in the CSA of neck flexion or extension muscles were found. Differences in the neuromucular function of the neck-shoulder muscles were associated with adolescent headache, especially in girls. Differences in the cross-sectional area of unilateral neck muscles were associated with headache, especially in boys. Differences in the neuromuscular function and in the cross-sectional area of the neck muscles also occurred between different types of headache. It remains to be established whether the findings are primary or secondary to adolescent migraine and tension headache. Keywords: adolescent, cross-sectional area, electromyography, endurance strength, fatigue, force, headache, leisure time activity, migraine, mobility, neck muscles, tension-type headache
Resumo:
BACKGROUND: Hypoxia-induced pulmonary vasoconstriction increases pulmonary arterial pressure (PAP) and may impede right heart function and exercise performance. This study examined the effects of oral nitrate supplementation on right heart function and performance during exercise in normoxia and hypoxia. We tested the hypothesis that nitrate supplementation would attenuate the increase in PAP at rest and during exercise in hypoxia, thereby improving exercise performance. METHODS: Twelve trained male cyclists [age: 31 ± 7 year (mean ± SD)] performed 15 km time-trial cycling (TT) and steady-state submaximal cycling (50, 100, and 150 W) in normoxia and hypoxia (11% inspired O2) following 3-day oral supplementation with either placebo or sodium nitrate (0.1 mmol/kg/day). We measured TT time-to-completion, muscle tissue oxygenation during TT and systolic right ventricle to right atrium pressure gradient (RV-RA gradient: index of PAP) during steady state cycling. RESULTS: During steady state exercise, hypoxia elevated RV-RA gradient (p > 0.05), while oral nitrate supplementation did not alter RV-RA gradient (p > 0.05). During 15 km TT, hypoxia lowered muscle tissue oxygenation (p < 0.05). Nitrate supplementation further decreased muscle tissue oxygenation during 15 km TT in hypoxia (p < 0.05). Hypoxia impaired time-to-completion during TT (p < 0.05), while no improvements were observed with nitrate supplementation in normoxia or hypoxia (p > 0.05). CONCLUSION: Our findings indicate that oral nitrate supplementation does not attenuate acute hypoxic pulmonary vasoconstriction nor improve performance during time trial cycling in normoxia and hypoxia.
Resumo:
The -function and the -function are phenomenological models that are widely used in the context of timing interceptive actions and collision avoidance, respectively. Both models were previously considered to be unrelated to each other: is a decreasing function that provides an estimation of time-to-contact (ttc) in the early phase of an object approach; in contrast, has a maximum before ttc. Furthermore, it is not clear how both functions could be implemented at the neuronal level in a biophysically plausible fashion. Here we propose a new framework- the corrected modified Tau function- capable of predicting both -type ("") and -type ("") responses. The outstanding property of our new framework is its resilience to noise. We show that can be derived from a firing rate equation, and, as , serves to describe the response curves of collision sensitive neurons. Furthermore, we show that predicts the psychophysical performance of subjects determining ttc. Our new framework is thus validated successfully against published and novel experimental data. Within the framework, links between -type and -type neurons are established. Therefore, it could possibly serve as a model for explaining the co-occurrence of such neurons in the brain.
Resumo:
Over the past two decades, electrophysiology has undergone unprecedented changes thanks to technical improvements, which simplify measurement and analysis and allow more compact data storage. This book covers in detail the spectrum of electrophysiology applications in patients with disorders of consciousness. Its content spans from clinical aspects of the management of subjects in the intensive care unit, including EEG, evoked potentials and related implications in terms of prognosis and patient management to research applications in subjects with ongoing consciousness impairment. While the first section provides up-to-date information for the interested clinician, the second part highlights the latest developments in this exciting field. The book comprehensively combines clinical and research information related to neurophysiology in disorder-of- consciousness patients, making it an easily accessible reference for neuro-ICU specialists, epileptologists and clinical neurophysiologists as well as researchers utilizing EEG and event-related potentials.
Resumo:
OBJECTIVE: To evaluate mammographic breast density in asymptomatic menopausal women in correlation with clinical and sonographic findings. MATERIALS AND METHODS: Mammograms and clinical and sonographic findings of 238 asymptomatic patients were retrospectively reviewed in the period from February/2022 to June/2006. The following variables were analyzed: mammographic density patterns, sonographic findings, patients' age, parity, body mass index and use of hormone replacement therapy. RESULTS: Age, parity and body mass index showed a negative correlation with breast density pattern, while use of hormone replacement therapy showed a positive correlation. Supplementary breast ultrasonography was performed in 103 (43.2%) patients. Alterations which could not be visualized at mammography were found in 34 (33%) of them, most frequently in women with breast density patterns 3 and 4. CONCLUSION: The authors concluded that breast density patterns were influenced by age, parity, body mass index and time of hormone replacement therapy. Despite not having found any malignant abnormality in the studied cases, the authors have observed a predominance of benign sonographic abnormalities in women with high breast density patterns and without mammographic abnormalities, proving the relevance of supplementary ultrasonography to identify breast lesions in such patients.
Resumo:
It is well established that cytotoxic T lymphocytes play a pivotal role in the protection against intracellular pathogens and tumour cells. Such protective immune responses rely on the specific T cell receptor (TCR)-mediated recognition by CD8 T cells of small antigenic peptides presented in the context of class-I Major Histocompatibility Complex molecules (pMHCs) on the surface of infected or malignant cells. The strength (affinity/avidity) of this interaction is a major correlate of protection. Although tumour-reactive CD8 T cells can be observed in cancer patients, anti-tumour immune responses are often ineffective in controlling or eradicating the disease due to the relative low TCR affinity of these cells. To overcome this limitation, tumour-specific CD8 T cells can be genetically modified to express TCRs of improved binding strength against a defined tumour antigen before adoptive cell transfer into cancer patients. We previously generated a panel of TCRs specific for the cancer-testis antigen NY-ESO-l,57.165 with progressively increased affinities for the pMHC complex, thus providing us with a unique tool to investigate the causal link between the surface expression of such TCRs and T cell activation and function. We recently demonstrated that anti-tumour CD8 T cell reactivity could only be improved within physiological affinity limits, beyond which drastic functional declines were observed, suggesting the presence of multiple regulatory mechanisms limiting T cell activation and function in a TCR affinity-dependent manner. The overarching goal of this thesis was (i) to assess the precise impact of TCR affinity on T cell activation and signalling at the molecular level and (ii) to gain further insights on the mechanisms that regulate and delimitate maximal/optimized CD8 T cell activation and signalling. Specifically, by combining several technical approaches we characterized the activation status of proximal (i.e. CD3Ç, Lek, and ZAP-70) and distal (i.e. ERK1/2) signalling molecules along the TCR affinity gradient. Moreover, we assessed the extent of TCR downmodulation, a critical step for initial T cell activation. CD8 T cells engineered with the optimal TCR affinity variants showed increased activation levels of both proximal and distal signalling molecules when compared to the wild-type T cells. Our analyses also highlighted the "paradoxical" status of tumour-reactive CD8 T cells bearing very high TCR affinities, which retained strong proximal signalling capacity and TCR downmodulation, but were unable to propagate signalling distally (i.e. pERKl/2), resulting in impaired cell-mediated functions. Importantly, these very high affinity T cells displayed maximal levels of SHP-1 and SHP-2 phosphatases, two negative regulatory molecules, and this correlated with a partial pERKl/2 signalling recovery upon pharmacological SHP-l/SHP-2 inhibition. These findings revealed the putative presence of inhibitory regulators of the TCR signalling cascade acting very rapidly following tumour-specific stimulation. Moreover, the very high affinity T cells were only able to transiently express enhanced proximal signalling molecules, suggesting the presence of an additional level of regulation that operates through the activation of negative feedback loops over time, limiting the duration of the TCR-mediated signalling. Overall, the determination of TCR-pMHC binding parameters eliciting optimal CD8 T cell activation, signalling, and effector function while guaranteeing high antigen specificity, together with the identification of critical regulatory mechanisms acting proximally in the TCR signalling cascade, will directly contribute to optimize and support the development of future TCR-based adoptive T cell strategies for the treatment of malignant diseases. -- Les lymphocytes T CD8 cytotoxiques jouent un rôle prédominant dans la protection contre les pathogènes intracellulaires et les cellules tumorales. Ces réponses immunitaires dépendent de la spécificité avec laquelle les récepteurs T (TCR) des lymphocytes CD8 reconnaissent les peptides antigéniques présentés par les molécules du complexe Majeur de Histocompatibilité de classe I (pCMH) à la surface des cellules infectées ou malignes. La force (ou affinité/avidité) de l'interaction du TCR-pCMH est un corrélat majeur de protection. Les réponses immunitaires sont cependant souvent inefficaces et ne permettent pas de contrôler ou d'éliminer les cellules tumorales chez les patients atteint du cancer, et ce à cause de la relative faible reconnaissance des TCRs exprimés par les lymphocytes T CD8 envers les antigènes tumoraux. Afin de surmonter cette limitation, les cellules T anti-tumorales peuvent être génétiquement modifiées en les dotant de TCRs préalablement optimisés afin d'augmenter leur reconnaissance ou affinité contre les antigènes tumoraux, avant leur ré¬infusion dans le patient. Nous avons récemment généré des cellules T CD8 exprimant un panel de TCRs spécifiques pour l'antigène tumoral NY-ESO-l157.16J avec des affinités croissantes, permettant ainsi d'investiguer la causalité directe entre l'affinité du TCR-pCMH et la fonction des cellules T CD8. Nous avons démontré que la réactivité anti-tumorale pouvait être améliorée en augmentant l'affinité du TCR dans une intervalle physiologique, mais au delà duquel nous observons un important déclin fonctionnel. Ces résultats suggèrent la présence de mécanismes de régulation limitant l'activation des cellules T de manière dépendante de l'affinité du TCR. Le but de cette thèse a été (i) de définir l'impact précis de l'affinité du TCR sur l'activation et la signalisation des cellules T CD8 au niveau moléculaire et (ii) d'acquérir de nouvelles connaissances sur les mécanismes qui régulent et délimitent l'activation et la signalisation maximale des cellules T CD8 optimisées. Spécifiquement, en combinant plusieurs approches technologiques, nous avons caractérisé l'état d'activation de différentes protéines de la voie de signalisation proximale (CD3Ç, Lek et ZAP-70) et distale (ERK1/2) le long du gradient d'affinité du TCR, ainsi que l'internalisation du TCR, une étape clef dans l'activation initiale des cellules T. Les lymphocytes T CD8 exprimant des TCRs d'affinité optimale ont montré des niveaux d'activation augmentés des molécules proximales et distales par rapport aux cellules de type sauvage (wild-type). Nos analyses ont également mis en évidence un paradoxe chez les cellules T CD8 équipées avec des TCRs de très haute affinité. En effet, ces cellules anti-tumorales sont capables d'activer leurs circuits biochimiques au niveau proximal et d'internaliser efficacement leur TCR, mais ne parviennent pas à propager les signaux biochimiques dépendants du TCR jusqu'au niveau distal (via phospho-ERKl/2), avec pour conséquence une limitation de leur capacité fonctionnelle. Finalement, nous avons démontré que SHP-1 et SHP-2, deux phosphatases avec des propriétés régulatrices négatives, étaient majoritairement exprimées dans les cellules T CD8 de très hautes affinités. Une récupération partielle des niveaux d'activation de ERK1/2 a pu être observée après l'inhibition pharmacologique de ces phosphatases. Ces découvertes révèlent la présence de régulateurs moléculaires qui inhibent le complexe de signalisation du TCR très rapidement après la stimulation anti-tumorale. De plus, les cellules T de très hautes affinités ne sont capables d'activer les molécules de la cascade de signalisation proximale que de manière transitoire, suggérant ainsi un second niveau de régulation via l'activation de mécanismes de rétroaction prenant place progressivement au cours du temps et limitant la durée de la signalisation dépendante du TCR. En résumé, la détermination des paramètres impliqués dans l'interaction du TCR-pCMH permettant l'activation de voies de signalisation et des fonctions effectrices optimales ainsi que l'identification des mécanismes de régulation au niveau proximal de la cascade de signalisation du TCR contribuent directement à l'optimisation et au développement de stratégies anti-tumorales basées sur l'ingénierie des TCRs pour le traitement des maladies malignes.
Resumo:
Objective: To determine the presence of linear relationship between renal cortical thickness, bipolar length, and parenchymal thickness in chronic kidney disease patients presenting with different estimated glomerular filtration rates (GFRs) and to assess the reproducibility of these measurements using ultrasonography. Materials and Methods: Ultrasonography was performed in 54 chronic renal failure patients. The scans were performed by two independent and blinded radiologists. The estimated GFR was calculated using the Cockcroft-Gault equation. Interobserver agreement was calculated and a linear correlation coefficient (r) was determined in order to establish the relationship between the different renal measurements and estimated GFR. Results: The correlation between GFR and measurements of renal cortical thickness, bipolar length, and parenchymal thickness was, respectively, moderate (r = 0.478; p < 0.001), poor (r = 0.380; p = 0.004), and poor (r = 0.277; p = 0.116). The interobserver agreement was considered excellent (0.754) for measurements of cortical thickness and bipolar length (0.833), and satisfactory for parenchymal thickness (0.523). Conclusion: The interobserver reproducibility for renal measurements obtained was good. A moderate correlation was observed between estimated GFR and cortical thickness, but bipolar length and parenchymal thickness were poorly correlated.
Resumo:
The POU4F2/Brn-3b transcription factor has been identified as a potentially novel regulator of key metabolic processes. Loss of this protein in Brn-3b knockout (KO) mice causes profound hyperglycemia and insulin resistance (IR), normally associated with type 2 diabetes (T2D), whereas Brn-3b is reduced in tissues taken from obese mice fed on high-fat diets (HFD), which also develop hyperglycemia and IR. Furthermore, studies in C2C12 myocytes show that Brn-3b mRNA and proteins are induced by glucose but inhibited by insulin, suggesting that this protein is itself highly regulated in responsive cells. Analysis of differential gene expression in skeletal muscle from Brn-3b KO mice showed changes in genes that are implicated in T2D such as increased glycogen synthase kinase-3β and reduced GLUT4 glucose transporter. The GLUT4 gene promoter contains multiple Brn-3b binding sites and is directly transactivated by this transcription factor in cotransfection assays, whereas chromatin immunoprecipitation assays confirm that Brn-3b binds to this promoter in vivo. In addition, correlation between GLUT4 and Brn-3b in KO tissues or in C2C12 cells strongly supports a close association between Brn-3b levels and GLUT4 expression. Since Brn-3b is regulated by metabolites and insulin, this may provide a mechanism for controlling key genes that are required for normal metabolic processes in insulin-responsive tissues and its loss may contribute to abnormal glucose uptake.
Resumo:
The main objective of this master’s thesis was to quantitatively study the reliability of market and sales forecasts of a certain company by measuring bias, precision and accuracy of these forecasts by comparing forecasts against actual values. Secondly, the differences of bias, precision and accuracy between markets were explained by various macroeconomic variables and market characteristics. Accuracy and precision of the forecasts seems to vary significantly depending on the market that is being forecasted, the variable that is being forecasted, the estimation period, the length of the estimated period, the forecast horizon and the granularity of the data. High inflation, low income level and high year-on-year market volatility seems to be related with higher annual market forecast uncertainty and high year-on-year sales volatility with higher sales forecast uncertainty. When quarterly market size is forecasted, correlation between macroeconomic variables and forecast errors reduces. Uncertainty of the sales forecasts cannot be explained with macroeconomic variables. Longer forecasts are more uncertain, shorter estimated period leads to higher uncertainty, and usually more recent market forecasts are less uncertain. Sales forecasts seem to be more uncertain than market forecasts, because they incorporate both market size and market share risks. When lead time is more than one year, forecast risk seems to grow as a function of root forecast horizon. When lead time is less than year, sequential error terms are typically correlated, and therefore forecast errors are trending or mean-reverting. The bias of forecasts seems to change in cycles, and therefore the future forecasts cannot be systematically adjusted with it. The MASE cannot be used to measure whether the forecast can anticipate year-on-year volatility. Instead, we constructed a new relative accuracy measure to cope with this particular situation.
Resumo:
Transcription factors play a crucial role in the regulation of cell behavior by modulating gene expression profiles. Previous studies have described a dual role for the AP-1 family transcription factor c-Jun in the regulation of cellular fate. In various cell types weak and transient activations of c-Jun N-terminal kinase (JNK) and c-Jun appear to contribute to proliferation and survival, whereas strong and prolonged activation of JNK and c-Jun result in apoptosis. These opposite roles played by c-Jun are cell type specific and the molecular mechanisms defining these antonymous c-Jun-mediated responses remain incompletely understood. c-Jun activity in transformed cells is regulated by signalling cascades downstream of oncoproteins such as Ras and Raf. In addition, the pro-proliferative role and the survival promoting function for c-Jun has been described in various cancer models. Furthermore, c-Jun was described to be overexpressed in different cancer types. However, the molecular mechanisms by which c-Jun exerts these oncogenic functions are not all clearly established. Therefore it is of primary interest to further identify molecular mechanisms and functions for c-Jun in cancer. Regulation of gene expression is tightly dependent on accurate protein-protein interactions. Therefore, co-factors for c-Jun may define the functions for c-Jun in cancer. Identification of protein-protein interactions promoting cancer may provide novel possibilities for cancer treatment. In this study, we show that DNA topoisomerase I (TopoI) is a transcriptional co-factor for c-Jun. Moreover, c-Jun and TopoI together promote expression of epidermal growth factor receptor (EGFR) in cancer cells. We also show that the clinically used TopoI inhibitor topotecan reduces EGFR expression. Importantly, the effect of TopoI on EGFR transcription was shown to depend on c-Jun as Jun-/- cells or cells treated with JNK inhibitor SP600125 are resistant to topotecan treatment both in regulation of EGFR expression and cell proliferation. Moreover, c-Jun regulates the nucleolar localization and the function of the ribonucleic acid (RNA) helicase DDX21, a previously identified member of c-Jun protein complex. In addition, c-Jun stimulates rRNA processing by supporting DDX21 rRNA binding. Finally, this study characterizes a DDX21 dependent expression of cyclin dependent kinase (Cdk) 6, a correlation of DDX21 expression with prostate cancer progression and a substrate binding dependency of DDX21 nucleolar localization in prostate cancer cells. Taken together, the results of this study validate the c-Jun-TopoI interaction and precise the c-Jun-DDX21 interaction. Moreover, these results show the importance for protein-protein interaction in the regulation of their cellular functions in cancer cell behavior. Finally, the results presented here disclose new exciting therapeutic opportunities for cancer treatment.
Resumo:
Tausta: Polyneuropatia (PNP) on ääreishermoston sairaus, joka aiheuttaa laaja-alaisia, yleensä symmetrisiä vaurioita ääreishermostossa. PNP:aan johtavia syitä on satoja. Tavoitteet: Löytää parhaat neurofysiologiset menetelmät uremian, myelooman hoidossa käytettävän talidomidin sekä Fabryn taudin aiheuttaman PNP:n diagnosoimiseksi. Fabryn taudissa tutkin lisäksi ohutsäieneuropatian aiheuttamia neuropatologisia löydöksiä iholta otetusta koepalasta. Tutkimuksissa kartoitettiin lisäksi PNP:n aiheuttamien subjektiivisten oireiden korrelaatio neurofysiologisten ja neuropatologisten löydösten kanssa. Munuaisten vajaatoimintaa sairastavilla potilailla tavoitteena oli tutkia dialyysihoidon tehon vaikutusta autonomisen hermoston toimintaan sekä yhden dialyysikerran vaikutusta neurofysiologisiin löydöksiin. Aineisto ja menetelmät: I: Tutkittiin 21 uremiapotilaan sensoristen ja motoristen hermojen vasteet, värinä- sekä lämpötuntokynnykset ennen ja jälkeen hemodialyysin. Subjektiiviset PNP oireet kartoitettiin PNP oireita kysyvillä kaavakkeella. II:12 talidomidi hoitoa saavaa myeloomapotilasta, tutkimuksen menetelmät olivat samat kuin tutkimuksessa I. III: 12 Fabryn tautia sairastavaa potilasta, edellä mainittujen neurofysiologisten tutkimusten lisäksi potilailta otettiin ihobiopsia säären alueelta. Ihobiopsiasta laskettiin ohuiden hermosyiden määrä koepalan värjäyksen jälkeen. Subjektiiviset PNP oireet kartoitettiin kyselykaavakkeella. Sydämen sykevaihtelu tutkittiin levossa taajuustason analyysillä. IV: 32 uremiapotilaan autonomisen hermoston toimintaa tutkittiin sydämen sykevaihtelun aikatason analysillä, paksujen myelinoituneiden säikeiden toimintaa tutkittiin perifeeristen sensoristen hermojen mittauksilla toistetusti noin 2.9 vuoden aikana. Tulokset: Ureemisen PNP:n diagnostiikassa herkimmät tutkimukset ovat F-aaltojen parametrit alaraajojen motorisista hermoista, värinätuntokynnys alaraajoista sekä suralishermon amplitudi. Positiiviset PNP oireet uremiassa korreloivat värinätunto-kynnyksen sekä sensoristen hermojen neurografialöydösten kanssa. Neurofysiologisten tutkimusten ajankohdalla dialyysiajankohtaan nähden ei ole merkitystä. Talidomidi-PNP on pääasiassa sensorinen, mutta motoriset syyt ovat lievästi vaurioituneet. Talidomidi PNP:ssa subjektiiviset oireet korreloivat huonosti neurofysiologisten löydösten kanssa. Fabryn taudissa naisilla on oletettua enemmän ohutsäieneuropatian aiheuttamia oireita ja löydöksiä. Paksujen säikeiden löydöksiä ei tullut esiin. Ohutsäieneuropatian diagnostiikassa ihobiopsia ja kvantitatiiviset tuntokynnysmittaustestit täydentävät toisiaan. Tehokas dialyysi parantaa autonomisen hermoston toimintaa uremiapotilailla. Päätelmät: Erityyppisten polyneuropatioiden diagnostiikassa pitää etukäteen valita PNP tyypille oikeat tutkimusmenetelmät raskaiden tutkimuspatterien vähentämiseksi sekä diagnostiikan parantamiseksi. PNP:n aiheuttamat oireet ja kliiniset löydökset pitää aina tutkia, mutta yksin ne eivät ole herkkiä PNP:n diagnostiikassa.
Resumo:
Dynamic mechanical analysis (DMA) is widely used in materials characterization. In this work, we briefly introduce the main concepts related to this technique such as, linear and non-linear viscoelasticity, relaxation time, response of material when it is submitted to a sinusoidal or other periodic stress. Moreover, the main applications of this technique in polymers and polymer blends are also presented. The discussion includes: phase behavior, crystallization; spectrum of relaxation as a function of frequency or temperature; correlation between the material damping and its acoustic and mechanical properties.
Resumo:
The identification of biomarkers of vascular cognitive impairment is urgent for its early diagnosis. The aim of this study was to detect and monitor changes in brain structure and connectivity, and to correlate them with the decline in executive function. We examined the feasibility of early diagnostic magnetic resonance imaging (MRI) to predict cognitive impairment before onset in an animal model of chronic hypertension: Spontaneously Hypertensive Rats. Cognitive performance was tested in an operant conditioning paradigm that evaluated learning, memory, and behavioral flexibility skills. Behavioral tests were coupled with longitudinal diffusion weighted imaging acquired with 126 diffusion gradient directions and 0.3 mm(3) isometric resolution at 10, 14, 18, 22, 26, and 40 weeks after birth. Diffusion weighted imaging was analyzed in two different ways, by regional characterization of diffusion tensor imaging (DTI) indices, and by assessing changes in structural brain network organization based on Q-Ball tractography. Already at the first evaluated times, DTI scalar maps revealed significant differences in many regions, suggesting loss of integrity in white and gray matter of spontaneously hypertensive rats when compared to normotensive control rats. In addition, graph theory analysis of the structural brain network demonstrated a significant decrease of hierarchical modularity, global and local efficacy, with predictive value as shown by regional three-fold cross validation study. Moreover, these decreases were significantly correlated with the behavioral performance deficits observed at subsequent time points, suggesting that the diffusion weighted imaging and connectivity studies can unravel neuroimaging alterations even overt signs of cognitive impairment become apparent.
Resumo:
The disintegration of recovered paper is the first operation in the preparation of recycled pulp. It is known that the defibering process follows a first order kinetics from which it is possible to obtain the disintegration kinetic constant (KD) by means of different ways. The disintegration constant can be obtained from the Somerville index results (%lsv and from the dissipated energy per volume unit (Ss). The %slv is related to the quantity of non-defibrated paper, as a measure of the non-disintegrated fiber residual (percentage of flakes), which is expressed in disintegration time units. In this work, disintegration kinetics from recycled coated paper has been evaluated, working at 20 revise rotor speed and for different fiber consistency (6, 8, 10, 12 and 14%). The results showed that the values of experimental disintegration kinetic constant, Ko, through the analysis of Somerville index, as function of time. Increased, the disintegration time was drastically reduced. The calculation of the disintegration kinetic constant (modelled Ko), extracted from the Rayleigh’s dissipation function, showed a good correlation with the experimental values using the evolution of the Somerville index or with the dissipated energy