994 resultados para Timber frame Structures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, the standards that deal with the determination of the properties of rigidity and strength for structural round timber elements do not take in consideration in their calculations and mathematical models the influence of the existing irregularities in the geometry of these elements. This study has as objective to determine the effective value of the modulus of longitudinal elasticity for structural round timber pieces of the Eucalyptus citriodora genus by a technique of optimization allied to the Inverse Analysis Method, to the Finite Element Method and the Least Square Method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Round timber has great use in civil construction, performing the function of beams, columns, foundations, poles for power distribution among others, with the advantage of not being processed, such as lumber. The structural design of round timber requires determining the elastic properties, mainly the modulus of elasticity. The Brazilian standards responsible for the stiffness and strength determination of round timber are in effect for over twenty years with no technical review. Round timber, for generally present an axis with non-zero curvature according to the position of the element in the bending test, may exhibit different values of modulus of elasticity. This study aims to analyze the position effect of Eucalyptus grandis round timber on the flexural modulus of elasticity. The three-point bending test was evaluated in two different positions based on the longitudinal rotation of the round timber element. The results revealed that at least two different positions of the round timber element are desired to obtain significant modulus of elasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid depletion of easy-to-access fossil fuel, predominantly, oil and gas resources has now necessitated increase in need to develop new oil and gas sources in ever more remote and hostile environments. This is necessary in order to explore more oil and gas resources to meet rapidly rising long-term energy demand in the world, both at present and in the nearest future. Arctic is one of these harsh environments, where enormous oil and gas resources are available, containing about 20% of the world total oil and gas, but the environmental conditions are very harsh and hostile. However, virtually all the facilities required for the exploration and development of this new energy source are constructed with metals as well as their alloys and are predominantly joined together by welding processes and technologies. Meanwhile, due to entirely different environment from the usual moderate temperate region, conventional welding technologies, common metals and their alloys cannot be applied as this Arctic environment demand metals structures with very high toughness and strength properties under extremely low temperature. This is due to the fact that metals transit from ductility to brittleness as the temperature moves toward extreme negative values. Hence, this research work investigates and presents the advanced welding technologies applicable to Arctic metal structures which can give satisfactory weldments under active Arctic service conditions. .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern machine structures are often fabricated by welding. From a fatigue point of view, the structural details and especially, the welded details are the most prone to fatigue damage and failure. Design against fatigue requires information on the fatigue resistance of a structure’s critical details and the stress loads that act on each detail. Even though, dynamic simulation of flexible bodies is already current method for analyzing structures, obtaining the stress history of a structural detail during dynamic simulation is a challenging task; especially when the detail has a complex geometry. In particular, analyzing the stress history of every structural detail within a single finite element model can be overwhelming since the amount of nodal degrees of freedom needed in the model may require an impractical amount of computational effort. The purpose of computer simulation is to reduce amount of prototypes and speed up the product development process. Also, to take operator influence into account, real time models, i.e. simplified and computationally efficient models are required. This in turn, requires stress computation to be efficient if it will be performed during dynamic simulation. The research looks back at the theoretical background of multibody dynamic simulation and finite element method to find suitable parts to form a new approach for efficient stress calculation. This study proposes that, the problem of stress calculation during dynamic simulation can be greatly simplified by using a combination of floating frame of reference formulation with modal superposition and a sub-modeling approach. In practice, the proposed approach can be used to efficiently generate the relevant fatigue assessment stress history for a structural detail during or after dynamic simulation. In this work numerical examples are presented to demonstrate the proposed approach in practice. The results show that approach is applicable and can be used as proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With an increasingly growing demand for natural resources, the Arctic region has become an attractive area, holding about 15% of world oil. Ice shrinkage caused by global warming encourages the development of offshore and ship-building sectors. Russia, as one of the leading oil and gas production countries is participating actively in cold resistant materials research, since half of its territory belongs to the Arctic environment, which held considerable stores of oil. Nowadays most Russian offshore platforms are located in the Sakhalin Island area, which geographically does not belong to the Arctic, but has com-parable environmental conditions. Russia recently has manufactured several offshore platforms. It became clear that further development of the Arctic off-shore structures with necessary reliability is highly depending on the materials employed. This work pursues the following objectives:  to provide a comprehensive review on Russian metals used for Arctic offshore structures on the base of standards, books, journal articles and companies reports  to overview various Arctic offshore structures and its structural characteristics  briefly discuss materials testing methods for low temperatures Master`s thesis focuses on specifications and description of Russian metals which are already in use and can be used for Arctic offshore structures. Work overviews several groups of steel, such as low carbon, low alloy, chromium containing steels, stainless steels, aluminium and nanostructured steels. Materials under discussion are grouped based on the standards, for instance the work covers shipbuilding and structural steels at the different sections. This paper provides an overview of important Russian Arctic offshore projects built for use in Russia and ordered by foreign countries. Future trends in development of the Arctic materials are discussed. Based on the information provided in this Master`s thesis it is possible to learn about Russian metals used for ships and offshore platforms operated in the Arctic region. Paper can be used as the comprehensive review of current materials, such as various steels, aluminium and nanomaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This doctoral thesis presents a study on the development of a liquid-cooled frame salient pole permanent-magnet-exited traction machine for a four-wheel-driven electric car. The emphasis of the thesis is put on a radial flux machine design in order to achieve a light-weight machine structure for traction applications. The design features combine electromagnetic and thermal design methods, because traction machine operation does not have a strict operating point. Arbitrary load cycles and the flexible supply require special attention in the design process. It is shown that accurate modelling of the machine magnetic state is essential for high-performance operation. The saturation effect related to the cross-saturation has to be taken carefully into account in order to achieve the desired operation. Two prototype machines have been designed and built for testing: one totally enclosed machine with a special magnet module pole arrangement and another through-ventilated machine with a more traditional embedded magnet structure. Both structures are built with magnetically salient structures in order to increase the torque production capability with the reluctance torque component. Both machine structures show potential for traction usage. However, the traditional embedded magnet design turns out to be mechanically the more secure one of these two machine options.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High strength steel (HSS) has been in use in workshops since the 1980s. At that time, the significance of the term HSS differed from the modern conception as the maximum yield strength of HSSs has increased nearly every year. There are three different ways to make HSS. The first and oldest method is QT (quenched and tempered) followed by the TMCP (thermomechanical controlled process) and DQ (direct quenching) methods. This thesis consists of two parts, the first of which part introduces the research topic and discusses welded HSS structures by characterizing the most important variables. In the second part of the thesis, the usability of welded HSS structures is examined through a set of laboratory tests. The results of this study explain the differences in the usability of the welded HSSs made by the three different methods. The results additionally indicate that usage of different HSSs in the welded structures presumes that manufacturers know what kind of HSS they are welding. As manufacturers use greater strength HSSs in welded structures, the demands for welding rise as well. Therefore, during the manufacturing process, factors such as heat input, cooling time, weld quality, and more must be under careful observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined relationships of organizational dependencies, change management and developed intellectual knowledge resources, in different intellectual capital based development programs on ICT-sector. Study was carried out in a research context, where high degree of external organizational contingencies existed and lots of changes in several development programs had taken place in the last years. From a scientific perspective the main contribution was that evidence between relationships of organizational dependencies, change model portfolio and developed knowledge resources could be suggested. From managerial perspective the primary implication was that in situations where sustainable competitive advantage is pursued by means of increasing knowledge based productivity of labor, firms should seek to pursue organizational settings where external dependencies have minimal amount of effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communication, the flow of ideas and information between individuals in a social context, is the heart of educational experience. Constructivism and constructivist theories form the foundation for the collaborative learning processes of creating and sharing meaning in online educational contexts. The Learning and Collaboration in Technology-enhanced Contexts (LeCoTec) course comprised of 66 participants drawn from four European universities (Oulu, Turku, Ghent and Ramon Llull). These participants were split into 15 groups with the express aim of learning about computer-supported collaborative learning (CSCL). The Community of Inquiry model (social, cognitive and teaching presences) provided the content and tools for learning and researching the collaborative interactions in this environment. The sampled comments from the collaborative phase were collected and analyzed at chain-level and group-level, with the aim of identifying the various message types that sustained high learning outcomes. Furthermore, the Social Network Analysis helped to view the density of whole group interactions, as well as the popular and active members within the highly collaborating groups. It was observed that long chains occur in groups having high quality outcomes. These chains were also characterized by Social, Interactivity, Administrative and Content comment-types. In addition, high outcomes were realized from the high interactive cases and high-density groups. In low interactive groups, commenting patterned around the one or two central group members. In conclusion, future online environments should support high-order learning and develop greater metacognition and self-regulation. Moreover, such an environment, with a wide variety of problem solving tools, would enhance interactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large amplitude bus bar aeolian vibration may lead to post insulator damage. Different damping applications are used to decrease the risk of large amplitude aeolian vibration. In this paper the post insulator load caused by the bus bar aeolian vibration and the effect of damping methods are evaluated. The effects of three types of bus bar connectors and three types of primary structures are studied. Two actual damping devices, damping cable and their combinations are studied. The post insulator loads are studied with strain gage based custom made force sensors installed on the both ends of the post insulator and with the displacement sensor installed on the midpoint of the bus bar. The post insulator loads are calculated from the strain values and the damping properties are determined from the displacement history. The bus bar is deflected with a hanging weight. The weight is released and the bus bar is left to free damped vibration. Both actual bus bar vibration dampers RIBE and SBI were very effective against the aeolian vibration. Combining vibration damper with damping cable will increase the damping ratio but it may be unnecessary considering the extra effort. Bus bar connector type or primary structure have no effect on the vertical load. The bending moment at the post insulator with double sided bus bar connector is significantly higher than at the post insulator with single sided bus bar connector. No reliable conclusions about bus bar connector type effect can be done, but the roller bearing type or central bearing type connector may reduce the bending moment. The RHS steel frame as primary structure may increase the bending moment peak values since it is the least rigid primary structure type and it may start to vibrate as a response to the awakening force of the vibrating bus bar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents an application of the Mobility Approach to the analysis of the power flow through grillage-like structures. Such structures are usually found in offshore platforms, supporting large and heavy machines. Different wave kinds (longitudinal, flexural and torsional) were initially considered in the power flow analysis between two beams joined in L. Beams excited by an in-plane point force showed strong coupling between longitudinal-flexural waves, while that for out-of-plane point force excitation, flexural-torsional waves coupling represents the most important mechanism of energy transmission. The response determination of grillages by the mobility approach requires the structure to be separated into simple beam-like structural components. Equations for rotations and displacements at the joints of all beams are written for as mobility functions, and moments and forces acting at the joints. A system of equations relating all such internal forces and moments is obtained. This approach was applied to simple grillages. Response results showed good agreement when compared to those provided by Finite Elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crack formation and growth in steel bridge structural elements may be due to loading oscillations. The welded elements are liable to internal discontinuities along welded joints and sensible to stress variations. The evaluation of the remaining life of a bridge is needed to make cost-effective decisions regarding inspection, repair, rehabilitation, and replacement. A steel beam model has been proposed to simulate crack openings due to cyclic loads. Two possible alternatives have been considered to model crack propagation, which the initial phase is based on the linear fracture mechanics. Then, the model is extended to take into account the elastoplastic fracture mechanic concepts. The natural frequency changes are directly related to moment of inertia variation and consequently to a reduction in the flexural stiffness of a steel beam. Thus, it is possible to adopt a nondestructive technique during steel bridge inspection to quantify the structure eigenvalue variation that will be used to localize the grown fracture. A damage detection algorithm is developed for the proposed model and the numerical results are compared with the solutions achieved by using another well know computer code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the effect of time delay on the active non-linear control of dynamically loaded flexible structures. The behavior of non-linear systems under state feedback control, considering a fixed time delay for the control force, is investigated. A control method based on non-linear optimal control, using a tensorial formulation and state feedback control is used. The state equations and the control forces are expressed in polynomial form and a performance index, quadratic in both state vector and control forces, is used. General polynomial representations of the non-linear control law are obtained and implemented for control algorithms up to the fifth order. This methodology is applied to systems with quadratic and cubic non-linearities. Strongly non-linear systems are tested and the effectiveness of the control system including a delay for the application of control forces is discussed. Numerical results indicate that the adopted control algorithm can be efficient for non-linear systems, chiefly in the presence of strong non-linearities but increasing time delay reduces the efficiency of the control system. Numerical results emphasize the importance of considering time delay in the project of active structural control systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper is Analyzed the local dynamical behavior of a slewing flexible structure considering nonlinear curvature. The dynamics of the original (nonlinear) governing equations of motion are reduced to the center manifold in the neighborhood of an equilibrium solution with the purpose of locally study the stability of the system. In this critical point, a Hopf bifurcation occurs. In this region, one can find values for the control parameter (structural damping coefficient) where the system is unstable and values where the system stability is assured (periodic motion). This local analysis of the system reduced to the center manifold assures the stable / unstable behavior of the original system around a known solution.