738 resultados para Ti alloys
Resumo:
The influence of potential on electrochemical behavior of Ti-6Al-7Nb alloy under simulate physiological conditions was investigated by electrochemical impedance spectroscopy (EIS). The experimental results were compared with those obtained by potentiodynamic polarization curves. All measurements were carried out in Hank's aerated solution at 25degreesC, at pH 7.8 and at different potentials (corrosion potential, 0 mV(SCE), 1000 mV(SCE), and 2000 mV(SCE)). The EIS spectra exhibited a two-step or a two-time constant system, suggesting the formation of a two-layer oxide film on the metal surface. The high corrosion resistance, displayed by this alloy in electrochemical polarization tests, is due to the dense inner layer, while its osseointegration ability can be ascribed to the presence of the outer porous layer. (C) 2004 Kluwer Academic Publishers.
Resumo:
The electrochemical behavior of Cu-xAl alloys, with 11 wt%less than or equal to x less than or equal to 15wt%, in 0.5 M H2SO4 was studied by means of open-circuit potential decay measurements, quasi-stationary and fast cyclic voltammetry, and electrochemical impedance spectroscopy. Some of the alloys (x less than or equal to 14%), when quenched formed martensitic structures. Alloys with greater than or equal to 13% showed a little square-shaped phase when quenched from temperatures around 800 degrees C. It was observed that in sulfuric medium, these formations were dealuminized differently than the martensitic phase. The values of the rest potentials are more influenced by the heat treatment rather than by the alloy composition. An anodic Tafel slope of ca. 60 mV/decade was observed for all the alloys, independently of the heat treatment. This is explained in terms of a competition between two processes: copper oxidation and copper(I) deproportionation. In the cyclic voltammetric experiments it was observed an anodic current peak, related with copper oxidation with a possible formation of some interfacial species, and a cathodic current peak during the reverse potential scan, associated with the reduction of soluble species and/or of the film. The AC Impedance data were interpreted in terms of electric equivalent circuits.
Resumo:
The electronic structure of Pb1-xLaxTiO3 (PLT) compounds for x ranging from 0 to 30 at. % of La is investigated by means of soft x-ray absorption near edge structure (XANES) at the Ti L-3,L-2 and O K edges. The greatest modification in the structure of the Ti 2p XANES spectra of the PLT compounds is observed in the region of the high energy peak of the L-3 edge (e(g) states), which exhibits a splitting in the undoped sample. As the amount of lanthanum increases, this splitting becomes less pronounced. This modification is interpreted as a decrease in the degree of disorder of titanium atoms, which is correlated to the substitution of Pb by La atoms. The structural changes observed at the low energy peaks of the O K-edge XANES spectra of the PLT compounds may be interpreted in terms of hybridization between O 2p, Ti 3d, and Pb 6p orbitals. A decrease in the degree of hybridization observed as Pb atoms are replaced by La atoms may be related to the differences in the ferroelectric properties observed between x=0.0 and x=0.30 compounds. (c) 2006 American Institute of Physics.
Resumo:
We report the successful deposition of CaBi2Nb2O9 (CBN) thin films on platinum coated silicon substrates by polymeric precursor method. The CBN thin films exhibited good structural, dielectric and CBN/Pt interface characteristics. The leakage current of the capacitor structure was around 0.15 A cm(-2) at an applied electric field of 30 kV cm(-1). The capacitance-voltage measurements indicated good ferroelectric polarization switching characteristics. The typical measured small signal dielectric constant and the dissipation factor at a frequency of 100 kHz were 90 and 0.053, respectively. The remanent polarization and the drive voltage values were 4.2 C cm(-2) and 1.7 V at an applied voltage of 10 V. No significant fatigue was observed at least up to 10(8) switching cycles. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Silica gel with a surface area of 500 m2g-1 and an average pore diameter of 60 angstrom was chemically modified with Ti(IV) oxide using the grafting method. The amount of metal oxide attached to the surface was 1.8.10(-3) mol g-1. The X-ray photoelectron spectra showed that the metal ion species on the surface are Ti(IV) in TiO2 and MTiO3 (M = Ca2+, Sr2+, Ba2+ and Pb2+), i.e. they have the binding energy of Ti2p3/2 = 458.7 eV. The dehydration of the solid at higher temperature increased the O(II)/Ti (O(II) = oxygen bound to titanium atom) ratio, presumably due to a reticulation of the hydrous Ti(IV) oxide on the silica surface at higher temperatures. Migration of Ti(IV) into the silica gel matrix was observed but the specific surface area was not significantly changed.
Resumo:
Thermal behavior of alpha-(Cu-Al-Ag) alloys, i.e. alloys with composition less than about 8.5 mass% Al, was studied using differential scanning calorimetry (DSC), differential thermal analysis (DTA), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The results indicated that the presence of silver introduces new thermal events ascribed to the formation of a silver-rich phase and, after addition higher amounts than 8 mass% Ag to the Cu-8 mass% Al alloy it is possible to observe the formation of the gamma(1) phase (Al4Cu9), which is only observed in alloys containing minimum of 9 mass% Al. These results may be attributed to some Ag characteristics and its interaction with Cu and Al.
Resumo:
The effects of bath composition and electroplating conditions on structure, morphology, and composition of amorphous Fe-Cr-P-Co deposits on AISI 1020 steel substrate, priorly plated with a thin Cu deposit, were investigated. The increase of charge density activates the inclusion of Cr in the deposit. However, above specific values of the charge density, which depend on the deposition current density, the Cr content in the deposit decreases. This Cr content decreasing is probably due to the significant hydrogen evolution with the increasing of deposition cur-rent and charge density. The effect of charge density on the content of Fe and Co is not clear. However, there is a tendency of increasing of Fe content and decreasing of Co content with the raising of current density. The Co is more easily deposited than the P, and its presence results in a more intense inhibition effect on the Cr deposition than the inhibition effect caused by P presence. Scanning electron microscope (SEM) analysis showed that Co increasing in the Fe-Cr-P-Co alloys analyzed does not promote the susceptibility to microcracks, which led to a good quality deposit. The passive film of the Fe-Cr-P-Co alloy shows a high ability formation and high protective capacity, and the results obtained by current density of corrosion, j(cor), show that the deposit with addition of Co, Fe31Cr11P28Co30, presents a higher corrosion resistance than the deposit with addition of Ni, Fe54Cr21P20Ni5. (C) 2004 Published by Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work the effect of Ag concentration on the thermal behavior of the Cu-10 mass% Al and Cu-11 mass% Al alloys with additions of 4, 6, 8 and 10 mass% Ag was studied using differential scanning calorimetry (DSC), in situ X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results showed that for the Cu-10 mass% Al alloy Ag addition induce the beta'(1) phase formation and for the Cu-11 mass% Al alloy these additions increase the amount of martensite formed on quenching and decrease the stability range of this phase on heating.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The completeness of beta-phase decomposition reaction in the Cu-11wt%Al-xwt%Ag alloys (x = 0, 1, 2, and 3) was studied using differential scanning calorimetry (DSC), X-ray diffractometry (XRD), and optical microscopy (OM). The results indicated that beta-phase transformations are highly dependent on cooling rate and on the presence of Ag. on slow cooling, the silver presence prevents the beta- and beta(1)-phase decomposition; thus, inducing the martensitic phase formation. After rapid cooling, a new thermal event is observed and the reverse martensitic transformation is shifted to lower temperatures.
Resumo:
SrBi2(Ta0.5Nb0.5)(2)O-9 (SBTN) thin films were obtained by polymeric precursor method on Pt/Ti/SiO2/Si(1 0 0) substrates. The film is dense and crack-free after annealing at 700 degrees C for 2 h in static air. Crystallinity and morphological characteristic were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FEG-SEM) and atomic force microscopy (AFM). The films displayed rounded grains with a superficial roughness of 3.5 nm. The dielectric permittivity was 122 with loss tangent of 0.040. The remanent polarization (P-r) and coercive field (E-c) were 5.1 mu C/cm(2) and 96 kV/cm, respectively. (C) 2007 Published by Elsevier B.V.