904 resultados para Thermodynamics of polymer Blends


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(methylvinylether-co-maleic acid) (PMVE/MA) is commonly used as a component of pharmaceutical platforms, principally to enhance interactions with biological substrates (mucoadhesion). However, the limited knowledge on the rheological properties of this polymer and their relationships with mucoadhesion has negated the biomedical use of this polymer as a mono-component platform. This study presents a comprehensive study of the rheological properties of aqueous PMVE/MA platforms and defines their relationships with mucoadhesion using multiple regression analysis. Using dilute solution viscometry the intrinsic viscosities of un-neutralised PMVE/MA and PMVE/MA neutralised using NaOH or TEA were 22.32 ± 0.89 dL g-1, 274.80 ± 1.94 dL g-1 and 416.49 ± 2.21 dL g-1 illustrating greater polymer chain expansion following neutralisation using Triethylamine (TEA). PMVE/MA platforms exhibited shear-thinning properties. Increasing polymer concentration increased the consistencies, zero shear rate (ZSR) viscosities (determined from flow rheometry), storage and loss moduli, dynamic viscosities (defined using oscillatory analysis) and mucoadhesive properties, yet decreased the loss tangents of the neutralised polymer platforms. TEA neutralised systems possessed significantly and substantially greater consistencies, ZSR and dynamic viscosities, storage and loss moduli, mucoadhesion and lower loss tangents than their NaOH counterparts. Multiple regression analysis enabled identification of the dominant role of polymer viscoelasticity on mucoadhesion (r > 0.98). The mucoadhesive properties of PMVE/MA platforms were considerable and were greater than those of other platforms that have successfully been shown to enhance in vivo retention when applied to the oral cavity, indicating a positive role for PMVE/MA mono-component platforms for pharmaceutical and biomedical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-inorganic nanocomposites combine unique properties of both the constituents in one material. Among this group of materials, clay based as well as ZnO, TiO2 nanocomposites have been found to have diverse applications. Optoelectronic devices require polymerinorganic systems to meet certain desired properties. Dielectric properties of conventional polymers like poly(ethylene-co-vinyl acetate) (EVA) and polystyrene (PS) may also be tailor tuned with the incorporation of inorganic fillers in very small amounts. Electrical conductivity and surface resistivity of polymer matrices are found to improve with inorganic nanofillers. II-VI semiconductors and their nano materials have attracted material scientists because of their unique optical properties of photoluminescence, UV photodetection and light induced conductivity. Cadmium selenide (CdSe), zinc selenide (ZnSe) and zinc oxide (ZnO) are some of the most promising members of the IIVI semiconductor family, used in light-emitting diodes, nanosensors, non-linear optical (NLO) absorption etc. EVA and PS materials were selected as the matrices in the present study because they are commercially used polymers and have not been the subject of research for opto-electronic properties with semiconductor nanomaterials

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer solar cells are promising in that they are inexpensive to produce, and due to their mechanical flexibility have the potential for use in applications not possible for more traditional types of solar cells. The performance of polymer solar cells depends strongly on the distribution of electron donor and acceptor material in the active layer. Understanding the connection between morphology and performance as well as how to control the morphology, is therefore of great importance. Furthermore, improving the lifetime of polymer solar cells has become at least as important as improving the efficiency.   In this thesis, the relation between morphology and solar cell performance is studied, and the material stability for blend films of the thiophene-quinoxaline copolymer TQ1 and the fullerene derivatives PCBM and PC70BM. Atomic force microscopy (AFM) and scanning transmission X-ray microscopy (STXM) are used to investigate the lateral morphology, secondary ion mass spectrometry (SIMS) to measure the vertical morphology and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy to determine the surface composition. Lateral phase-separated domains are observed whose size is correlated to the solar cell performance, while the observed TQ1 surface enrichment does not affect the performance. Changes to the unoccupied molecular orbitals as a result of illumination in ambient air are observed by NEXAFS spectroscopy for PCBM, but not for TQ1. The NEXAFS spectrum of PCBM in a blend with TQ1 changes more than that of pristine PCBM. Solar cells in which the active layer has been illuminated in air prior to the deposition of the top electrode exhibit greatly reduced electrical performance. The valence band and absorption spectrum of TQ1 is affected by illumination in air, but the effects are not large enough to account for losses in solar cell performance, which are mainly attributed to PCBM degradation at the active layer surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid halide perovskites have emerged as promising active constituents of next generation solution processable optoelectronic devices. During their assembling process, perovskite components undergo very complex dynamic equilibria starting in solution and progressing throughout film formation. Finding a methodology to control and affect these equilibria, responsible for the unique morphological diversity observed in perovskite films, constitutes a fundamental step towards a reproducible material processability. Here we propose the exploitation of polymer matrices as cooperative assembling components of novel perovskite CH3NH3PbI3 : polymer composites, in which the control of the chemical interactions in solution allows a predictable tuning of the final film morphology. We reveal that the nature of the interactions between perovskite precursors and polymer functional groups, probed by Nuclear Magnetic Resonance (NMR) spectroscopy and Dynamic Light Scattering (DLS) techniques, allows the control of aggregates in solution whose characteristics are strictly maintained in the solid film, and permits the formation of nanostructures that are inaccessible to conventional perovskite depositions. These results demonstrate how the fundamental chemistry of perovskite precursors in solution has a paramount influence on controlling and monitoring the final morphology of CH3NH3PbI3 (MAPbI3) thin films, foreseeing the possibility of designing perovskite : polymer composites targeting diverse optoelectronic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the development of biosensors for ecotoxicity testing it is desirable to produce a small, portable system that can be used in the field. Toxicity testing using bioluminescence is widely used in the laboratory utilising natural and genetically modified (lux/ luc-marked) bacteria and other microorganisms. It is currently not possible to use genetically manipulated microorganisms in field testing and a biosensor, therefore, that incorporates naturally luminescent organisms may be preferred. In the development of a biosensor it is aimed to use the naturally luminescent bacterium Vibrio fischeri as a toxicity detection system on a chip. The bacterium will be immobilised in a polymeric matrix. Current work deals with the optimisation of light output and light preservation within the bacterium prior to immobilisation in polyvinyl alcohol. An examination of a range of physicochemical conditions within the polymer will be made, including cell density, thickness of polymer film, growth and light induction environment, and, preservation conditions, in order to develop a testing system giving consistent results over the lifetime of the biosensor. Data will be presented on light production using different culture media for the growth of V. fischeri and retention of light under immobilised conditions. .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient power dissipation profiles in handheld electronic devices alternate between high and low power states depending on usage. Capacitive thermal management based on phase change materials potentially offers a fan-less thermal management for such transient profiles. However, such capacitive management becomes feasible only if there is a significant enhancement in the enthalpy change per unit volume of the phase change material since existing bulk materials such as paraffin fall short of requirements. In this thesis I propose novel nanostructured thin-film materials that can potentially exhibit significantly enhanced volumetric enthalpy change. Using fundamental thermodynamics of phase transition, calculations regarding the enhancement resulting from superheating in such thin film systems is conducted. Furthermore design of a microfabricated calorimeter to measure such enhancements is explained in detail. This work advances the state-of-art of phase change materials for capacitive cooling of handheld devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiscale reinforcement, using carbon microfibers and multi-walled carbon nanotubes, of polymer matrix composites manufactured by twin-screw extrusion is investigated for enhanced mechanical and thermal properties with an emphasis on the use of a diverging flow in the die for fluid mechanical fiber manipulation. Using fillers at different length scales (microscale and nanoscale), synergistic combinations have been identified to produce distinct mechanical and thermal behavior. Fiber manipulation has been demonstrated experimentally and computationally, and has been shown to enhance thermal conductivity significantly. Finally, a new physics driven predictive model for thermal conductivity has been developed based on fiber orientation during flow, which is shown to successfully capture composite thermal conductivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin film adhesion often determines microelectronic device reliability and it is therefore essential to have experimental techniques that accurately and efficiently characterize it. Laser-induced delamination is a novel technique that uses laser-generated stress waves to load thin films at high strain rates and extract the fracture toughness of the film/substrate interface. The effectiveness of the technique in measuring the interface properties of metallic films has been documented in previous studies. The objective of the current effort is to model the effect of residual stresses on the dynamic delamination of thin films. Residual stresses can be high enough to affect the crack advance and the mode mixity of the delimitation event, and must therefore be adequately modeled to make accurate and repeatable predictions of fracture toughness. The equivalent axial force and bending moment generated by the residual stresses are included in a dynamic, nonlinear finite element model of the delaminating film, and the impact of residual stresses on the final extent of the interfacial crack, the relative contribution of shear failure, and the deformed shape of the delaminated film is studied in detail. Another objective of the study is to develop techniques to address issues related to the testing of polymeric films. These type of films adhere well to silicon and the resulting crack advance is often much smaller than for metallic films, making the extraction of the interface fracture toughness more difficult. The use of an inertial layer which enhances the amount of kinetic energy trapped in the film and thus the crack advance is examined. It is determined that the inertial layer does improve the crack advance, although in a relatively limited fashion. The high interface toughness of polymer films often causes the film to fail cohesively when the crack front leaves the weakly bonded region and enters the strong interface. The use of a tapered pre-crack region that provides a more gradual transition to the strong interface is examined. The tapered triangular pre-crack geometry is found to be effective in reducing the stresses induced thereby making it an attractive option. We conclude by studying the impact of modifying the pre-crack geometry to enable the testing of multiple polymer films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kafirin microparticles have been proposed as an oral nutraceutical and drug delivery system. This study investigates microparticles formed with kafirin extracted from white and raw versus cooked red sorghum grains as an oral delivery system. Targeted delivery to the colon would be beneficial for medication such as prednisolone, which is used in the management of inflammatory bowel disease. Therefore, prednisolone was loaded into microparticles of kafirin from the different sources using phase separation. Differences were observed in the protein content, in vitro protein digestibility, and protein electrophoretic profile of the various sources of sorghum grains, kafirin extracts, and kafirin microparticles. For all of the formulations, the majority of the loaded prednisolone was not released in in vitro conditions simulating the upper gastrointestinal tract, indicating that most of the encapsulated drug could reach the target area of the lower gastrointestinal tract. This suggests that these kafirin microparticles may have potential as a colon-targeted nutraceutical and drug delivery system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When you are invited to offer a conference like this, can not stop having a series of questions and considerations about the very fact of speaking to an audience informed and educated about the issues that the title might suggest exposure and how without falling into the usual cliches, without repeating the views and opinions set forth, if not obvious. I propose, then, establish, as a starting point, two things: the first is a promise: I will not talk about internet, a recurrent theme in his classes and activities. The second is a kind of contract between you and me: check out the obviousness of some views and question it, see it from behind, because that is where we might find the seams, some of the patches, if not outright nudity. I wonder if this is not precisely one of the first tasks of teaching in the University: to force what seems obvious to justify its obviousness, which is not easy.We can start messing things up a bit, looking like a very smooth and made ​​some surrealist poets to cut one by one the words of poems and writings, throw them into the air and read with amazement the order they fall to form a new verse, Perhaps more interesting and evocative than the first. Is not this somewhat random operation of new blends the fundamental operation of so many new discoveries and innovative ideas in the fields of science, culture, arts? Some of you know the thought of Pascal says: "Do not say that I am not proposing something new: the order in which the material presented is different."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomic force microscopy (AFM) allows the analysis of individual polymers at nanostructural level with a minimal sample preparation. This technique has been used to analyse the pectin disassembly process during the ripening and postharvest storage of several fleshy fruits. In general, pectins analysed by AFM are usually visualized as isolated chains, unbranched or with a low number of branchs and, occasionally, as large aggregates. However, the exact nature of these structures is unknown. It has been suggested that pectin aggregates represent a mixture of rhamnonogalacturonan I and homogalacturonan, while isolated chains and their branches are mainly composed by polygalacturonic acid. In order to gain insight into the nature of these structures, sodium carbonate soluble pectins from ripe strawberry (Fragaria x ananassa, Duch.) fruits were subjected to enzymatic digestion with endo-Polygalacturonase M2 from Aspergillus aculeatus, and the samples visualized by AFM at different time intervals. Pectins isolated from control, non-transformed plants, and two transgenic genotypes with low level of expression of ripening-induced pectinase genes encoding a polygalacturonase (APG) or a pectate lyase (APEL) were also included in this study. Before digestion, isolated pectin chains from control were shorter than those from transgenic fruits, showing number-average (LN) contour length values of 73.2 nm vs. 95.9 nm and 91.4 nm in APG and APEL, respectively. The percentage of branched polymers was significantly higher in APG polyuronides than in the remaining genotypes, 33% in APG vs. 6% in control and APEL. As a result of the endo-PG treatment, a gradual decrease in the main backbone length of isolated chains was observed in the three samples. The minimum LN value was reached after 8 h of digestion, being similar in the three genotypes, 22 nm. By contrast, the branches were not visible after 1.5-2 h of digestion. LN values were plotted against digestion time and the data fitted to a first-order exponential decay curve, obtaining R2 values higher than 0.9. The half digestion time calculated with these equations were similar for control and APG pectins, 1.7 h, but significantly higher in APEL, 2.5 h, indicating that these polymer chains were more resistant to endo-PG digestion. Regarding the pectin aggregates, their volumes were estimated and used to calculate LN molecular weights. Before digestion, control and APEL samples showed complexes of similar molecular weights, 1722 kDa, and slightly higher than those observed in APG samples. After endo-PG digestion, size of complexes diminished significantly, reaching similar values in the three pectin samples, around 650 kDa. These results suggest that isolated polymer chains visualized by AFM are formed by a HG domain linked to a shorter polymer resistant to endo-PG digestion, maybe xylogalacturonan or RG-I. The silencing of the pectate lyase gene slightly modified the structure and/or chemical composition of polymer chains making these polyuronides more resistant to enzymatic degradation. Similarly, polygalacturonic acid is one of the main component of the aggregates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last three decades, there has been a broad academic and industrial interest in conjugated polymers as semiconducting materials for organic electronics. Their applications in polymer light-emitting diodes (PLEDs), polymer solar cells (PSCs), and organic field-effect transistors (OFETs) offer opportunities for the resolution of energy issues as well as the development of display and information technologies1. Conjugated polymers provide several advantages including low cost, light weight, good flexibility, as well as solubility which make them readily processed and easily printed, removing the conventional photolithography for patterning2. A large library of polymer semiconductors have been synthesized and investigated with different building blocks, such as acenes or thiophene and derivatives, which have been employed to design new materials according to individual demands for specific applications. To design ideal conjugated polymers for specific applications, some general principles should be taken into account, including (i) side chains (ii) molecular weights, (iii) band gap and HOMO and LUMO energy levels, and (iv) suited morphology.3-6 The aim of this study is to elucidate the impact that substitution exerts on the molecular and electronic structure of π-conjugated polymers with outstanding performances in organic electronic devices. Different configurations of the π-conjugated backbones are analyzed: (i) donor-acceptor configuration, (ii) 1D lineal or 2D branched conjugated backbones, and (iii) encapsulated polymers (see Figure 1). Our combined vibrational spectroscopy and DFT study shows that small changes in the substitution pattern and in the molecular configuration have a strong impact on the electronic characteristics of these polymers. We hope this study can advance useful structure-property relationships of conjugated polymers and guide the design of new materials for organic electronic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies indicate that a variation in the degree of crystallinity of the components of a polymer blend influences the mechanical properties. This variation can be obtained by subjecting the blend to heat treatments that lead to changes in the spherulitic structure. The aim of this work is to analyze the influence of different heat treatments on the variation of the degree of crystallinity and to establish a relationship between this variation and the mechanical behavior of poly(methyl methacrylate)/poly(ethylene terephthalate) recycled (PMMA / PETrec) with and without the use of compatibilizer agent poly(methyl methacrylate-al-glycidyl methacrylate-al-ethyl acrylate) (MMAGMA- EA). All compositions were subjected to two heat treatments. T1 heat treatment the samples were treated at 130 ° C for 30 minutes and cooled in air. In T2, the samples were treated at 230 ° C for 5 minutes and cooled to approximately -10 ° C. The variation of the degree of crystallinity was determined by the proportional relationship between crystallinity and density, with the density measured by pycnometry. The mechanical behavior was verified by tensile tests with and without the presence of notches and pre-cracks, and by method of fracture toughness in plane strain (KIC). We used the scanning electron microscopy (SEM) to analyze the fracture surface of the samples. The compositions subjected to heat treatment T1, in general, showed an increase in the degree of crystallinity in tensile strength and a tendency to decrease in toughness, while compositions undergoing treatment T2 showed that the opposite behavior. Therefore, this work showed that heat treatment can give a polymer blend further diversity of its properties, this being caused by changes in the crystal structure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work studied the immiscible blend of elastomeric poly(methyl methacrylate) (PMMA) with poly(ethylene terephthalate) (PET) bottle grade with and without the use of compatibilizer agent, poly(methyl methacrylate-co-glycidyl methacrylate - co-ethyl acrylate) (MGE). The characterizations of torque rheometry, melt flow index measurement (MFI), measuring the density and the degree of cristallinity by pycnometry, tensile testing, method of work essential fracture (EWF), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were performed in pure polymer and blends PMMA/PET. The rheological results showed evidence of signs of chemical reaction between the epoxy group MGE with the end groups of the PET chains and also to the elastomeric phase of PMMA. The increase in the concentration of PET reduced torque and adding MGE increased the torque of the blend of PMMA/PET. The results of the MFI also show that elastomeric PMMA showed lower flow and thus higher viscosity than PET. In the results of picnometry observed that increasing the percentage of PET resulted in an increase in density and degree crystallinity of the blends PMMA/PET. The tensile test showed that increasing the percentage of PET resulted in an increase in ultimate strength and elastic modulus and decrease in elongation at break. However, in the phase inversion, where the blend showed evidence of a co-continuous morphology and also, with 30% PET dispersed phase and compatibilized with 5% MGE, there were significant results elongation at break compared to elastomeric PMMA. The applicability of the method of essential work of fracture was shown to be possible for most formulations. And it was observed that with increasing elastomeric PMMA in the formulations of the blends there was an improvement in specific amounts of essential work of fracture (We) and a decrease in the values of specific non-essential work of fracture (βWp)