993 resultados para Target debt ratio


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously published reports indicate that serum copper levels are elevated in patients with prostate cancer and that increased copper uptake can be used as a means to image prostate tumors. It is unclear, however, to what extent copper is required for prostate cancer cell function as we observed only modest effects of chelation strategies on the growth of these cells in vitro. With the goal of exploiting prostate cancer cell proclivity for copper uptake, we developed a "conditional lethal" screen to identify compounds whose cytotoxic actions were manifested in a copper-dependent manner. Emerging from this screen was a series of dithiocarbamates, which, when complexed with copper, induced reactive oxygen species-dependent apoptosis of malignant, but not normal, prostate cells. One of the dithiocarbamates identified, disulfiram (DSF), is an FDA-approved drug that has previously yielded disappointing results in clinical trials in patients with recurrent prostate cancer. Similarly, in our studies, DSF alone had a minimal effect on the growth of prostate cancer tumors when propagated as xenografts. However, when DSF was coadministered with copper, a very dramatic inhibition of tumor growth in models of hormone-sensitive and of castrate-resistant disease was observed. Furthermore, we determined that prostate cancer cells express high levels of CTR1, the primary copper transporter, and additional chaperones that are required to maintain intracellular copper homeostasis. The expression levels of most of these proteins are increased further upon treatment of androgen receptor (AR)-positive prostate cancer cell lines with androgens. Not surprisingly, robust CTR1-dependent uptake of copper into prostate cancer cells was observed, an activity that was accentuated by activation of AR. Given these data linking AR to intracellular copper uptake, we believe that dithiocarbamate/copper complexes are likely to be effective for the treatment of patients with prostate cancer whose disease is resistant to classical androgen ablation therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray mammography has been the gold standard for breast imaging for decades, despite the significant limitations posed by the two dimensional (2D) image acquisitions. Difficulty in diagnosing lesions close to the chest wall and axilla, high amount of structural overlap and patient discomfort due to compression are only some of these limitations. To overcome these drawbacks, three dimensional (3D) breast imaging modalities have been developed including dual modality single photon emission computed tomography (SPECT) and computed tomography (CT) systems. This thesis focuses on the development and integration of the next generation of such a device for dedicated breast imaging. The goals of this dissertation work are to: [1] understand and characterize any effects of fully 3-D trajectories on reconstructed image scatter correction, absorbed dose and Hounsifeld Unit accuracy, and [2] design, develop and implement the fully flexible, third generation hybrid SPECT-CT system capable of traversing complex 3D orbits about a pendant breast volume, without interference from the other. Such a system would overcome artifacts resulting from incompletely sampled divergent cone beam imaging schemes and allow imaging closer to the chest wall, which other systems currently under research and development elsewhere cannot achieve.

The dependence of x-ray scatter radiation on object shape, size, material composition and the CT acquisition trajectory, was investigated with a well-established beam stop array (BSA) scatter correction method. While the 2D scatter to primary ratio (SPR) was the main metric used to characterize total system scatter, a new metric called ‘normalized scatter contribution’ was developed to compare the results of scatter correction on 3D reconstructed volumes. Scatter estimation studies were undertaken with a sinusoidal saddle (±15° polar tilt) orbit and a traditional circular (AZOR) orbit. Clinical studies to acquire data for scatter correction were used to evaluate the 2D SPR on a small set of patients scanned with the AZOR orbit. Clinical SPR results showed clear dependence of scatter on breast composition and glandular tissue distribution, otherwise consistent with the overall phantom-based size and density measurements. Additionally, SPR dependence was also observed on the acquisition trajectory where 2D scatter increased with an increase in the polar tilt angle of the system.

The dose delivered by any imaging system is of primary importance from the patient’s point of view, and therefore trajectory related differences in the dose distribution in a target volume were evaluated. Monte Carlo simulations as well as physical measurements using radiochromic film were undertaken using saddle and AZOR orbits. Results illustrated that both orbits deliver comparable dose to the target volume, and only slightly differ in distribution within the volume. Simulations and measurements showed similar results, and all measured dose values were within the standard screening mammography-specific, 6 mGy dose limit, which is used as a benchmark for dose comparisons.

Hounsfield Units (HU) are used clinically in differentiating tissue types in a reconstructed CT image, and therefore the HU accuracy of a system is very important, especially when using non-traditional trajectories. Uniform phantoms filled with various uniform density fluids were used to investigate differences in HU accuracy between saddle and AZOR orbits. Results illustrate the considerably better performance of the saddle orbit, especially close to the chest and nipple region of what would clinically be a pedant breast volume. The AZOR orbit causes shading artifacts near the nipple, due to insufficient sampling, rendering a major portion of the scanned phantom unusable, whereas the saddle orbit performs exceptionally well and provides a tighter distribution of HU values in reconstructed volumes.

Finally, the third generation, fully-suspended SPECT-CT system was designed in and developed in our lab. A novel mechanical method using a linear motor was developed for tilting the CT system. A new x-ray source and a custom made 40 x 30 cm2 detector were integrated on to this system. The SPECT system was nested, in the center of the gantry, orthogonal to the CT source-detector pair. The SPECT system tilts on a goniometer, and the newly developed CT tilting mechanism allows ±15° maximum polar tilting of the CT system. The entire gantry is mounted on a rotation stage, allowing complex arbitrary trajectories for each system, without interference from the other, while having a common field of view. This hybrid system shows potential to be used clinically as a diagnostic tool for dedicated breast imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The outcomes for both (i) radiation therapy and (ii) preclinical small animal radio- biology studies are dependent on the delivery of a known quantity of radiation to a specific and intentional location. Adverse effects can result from these procedures if the dose to the target is too high or low, and can also result from an incorrect spatial distribution in which nearby normal healthy tissue can be undesirably damaged by poor radiation delivery techniques. Thus, in mice and humans alike, the spatial dose distributions from radiation sources should be well characterized in terms of the absolute dose quantity, and with pin-point accuracy. When dealing with the steep spatial dose gradients consequential to either (i) high dose rate (HDR) brachytherapy or (ii) within the small organs and tissue inhomogeneities of mice, obtaining accurate and highly precise dose results can be very challenging, considering commercially available radiation detection tools, such as ion chambers, are often too large for in-vivo use.

In this dissertation two tools are developed and applied for both clinical and preclinical radiation measurement. The first tool is a novel radiation detector for acquiring physical measurements, fabricated from an inorganic nano-crystalline scintillator that has been fixed on an optical fiber terminus. This dosimeter allows for the measurement of point doses to sub-millimeter resolution, and has the ability to be placed in-vivo in humans and small animals. Real-time data is displayed to the user to provide instant quality assurance and dose-rate information. The second tool utilizes an open source Monte Carlo particle transport code, and was applied for small animal dosimetry studies to calculate organ doses and recommend new techniques of dose prescription in mice, as well as to characterize dose to the murine bone marrow compartment with micron-scale resolution.

Hardware design changes were implemented to reduce the overall fiber diameter to <0.9 mm for the nano-crystalline scintillator based fiber optic detector (NanoFOD) system. Lower limits of device sensitivity were found to be approximately 0.05 cGy/s. Herein, this detector was demonstrated to perform quality assurance of clinical 192Ir HDR brachytherapy procedures, providing comparable dose measurements as thermo-luminescent dosimeters and accuracy within 20% of the treatment planning software (TPS) for 27 treatments conducted, with an inter-quartile range ratio to the TPS dose value of (1.02-0.94=0.08). After removing contaminant signals (Cerenkov and diode background), calibration of the detector enabled accurate dose measurements for vaginal applicator brachytherapy procedures. For 192Ir use, energy response changed by a factor of 2.25 over the SDD values of 3 to 9 cm; however a cap made of 0.2 mm thickness silver reduced energy dependence to a factor of 1.25 over the same SDD range, but had the consequence of reducing overall sensitivity by 33%.

For preclinical measurements, dose accuracy of the NanoFOD was within 1.3% of MOSFET measured dose values in a cylindrical mouse phantom at 225 kV for x-ray irradiation at angles of 0, 90, 180, and 270˝. The NanoFOD exhibited small changes in angular sensitivity, with a coefficient of variation (COV) of 3.6% at 120 kV and 1% at 225 kV. When the NanoFOD was placed alongside a MOSFET in the liver of a sacrificed mouse and treatment was delivered at 225 kV with 0.3 mm Cu filter, the dose difference was only 1.09% with use of the 4x4 cm collimator, and -0.03% with no collimation. Additionally, the NanoFOD utilized a scintillator of 11 µm thickness to measure small x-ray fields for microbeam radiation therapy (MRT) applications, and achieved 2.7% dose accuracy of the microbeam peak in comparison to radiochromic film. Modest differences between the full-width at half maximum measured lateral dimension of the MRT system were observed between the NanoFOD (420 µm) and radiochromic film (320 µm), but these differences have been explained mostly as an artifact due to the geometry used and volumetric effects in the scintillator material. Characterization of the energy dependence for the yttrium-oxide based scintillator material was performed in the range of 40-320 kV (2 mm Al filtration), and the maximum device sensitivity was achieved at 100 kV. Tissue maximum ratio data measurements were carried out on a small animal x-ray irradiator system at 320 kV and demonstrated an average difference of 0.9% as compared to a MOSFET dosimeter in the range of 2.5 to 33 cm depth in tissue equivalent plastic blocks. Irradiation of the NanoFOD fiber and scintillator material on a 137Cs gamma irradiator to 1600 Gy did not produce any measurable change in light output, suggesting that the NanoFOD system may be re-used without the need for replacement or recalibration over its lifetime.

For small animal irradiator systems, researchers can deliver a given dose to a target organ by controlling exposure time. Currently, researchers calculate this exposure time by dividing the total dose that they wish to deliver by a single provided dose rate value. This method is independent of the target organ. Studies conducted here used Monte Carlo particle transport codes to justify a new method of dose prescription in mice, that considers organ specific doses. Monte Carlo simulations were performed in the Geant4 Application for Tomographic Emission (GATE) toolkit using a MOBY mouse whole-body phantom. The non-homogeneous phantom was comprised of 256x256x800 voxels of size 0.145x0.145x0.145 mm3. Differences of up to 20-30% in dose to soft-tissue target organs was demonstrated, and methods for alleviating these errors were suggested during whole body radiation of mice by utilizing organ specific and x-ray tube filter specific dose rates for all irradiations.

Monte Carlo analysis was used on 1 µm resolution CT images of a mouse femur and a mouse vertebra to calculate the dose gradients within the bone marrow (BM) compartment of mice based on different radiation beam qualities relevant to x-ray and isotope type irradiators. Results and findings indicated that soft x-ray beams (160 kV at 0.62 mm Cu HVL and 320 kV at 1 mm Cu HVL) lead to substantially higher dose to BM within close proximity to mineral bone (within about 60 µm) as compared to hard x-ray beams (320 kV at 4 mm Cu HVL) and isotope based gamma irradiators (137Cs). The average dose increases to the BM in the vertebra for these four aforementioned radiation beam qualities were found to be 31%, 17%, 8%, and 1%, respectively. Both in-vitro and in-vivo experimental studies confirmed these simulation results, demonstrating that the 320 kV, 1 mm Cu HVL beam caused statistically significant increased killing to the BM cells at 6 Gy dose levels in comparison to both the 320 kV, 4 mm Cu HVL and the 662 keV, 137Cs beams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intratumoral B lymphocytes are an integral part of the lung tumor microenvironment. Interrogation of the antibodies they express may improve our understanding of the host response to cancer and could be useful in elucidating novel molecular targets. We used two strategies to explore the repertoire of intratumoral B cell antibodies. First, we cloned VH and VL genes from single intratumoral B lymphocytes isolated from one lung tumor, expressed the genes as recombinant mAbs, and used the mAbs to identify the cognate tumor antigens. The Igs derived from intratumoral B cells demonstrated class switching, with a mean VH mutation frequency of 4%. Although there was no evidence for clonal expansion, these data are consistent with antigen-driven somatic hypermutation. Individual recombinant antibodies were polyreactive, although one clone demonstrated preferential immunoreactivity with tropomyosin 4 (TPM4). We found that higher levels of TPM4 antibodies were more common in cancer patients, but measurement of TPM4 antibody levels was not a sensitive test for detecting cancer. Second, in an effort to focus our recombinant antibody expression efforts on those B cells that displayed evidence of clonal expansion driven by antigen stimulation, we performed deep sequencing of the Ig genes of B cells collected from seven different tumors. Deep sequencing demonstrated somatic hypermutation but no dominant clones. These strategies may be useful for the study of B cell antibody expression, although identification of a dominant clone and unique therapeutic targets may require extensive investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Utilization of cardiac services varies across regions and hospitals, yet little is known regarding variation in the intensity of outpatient cardiac care across cardiology physician practices or the association with clinical endpoints, an area of potential importance to promote efficient care. METHODS AND RESULTS: We included 7 160 732 Medicare beneficiaries who received services from 5635 cardiology practices in 2012. Beneficiaries were assigned to practices providing the plurality of office visits, and practices were ranked and assigned to quartiles using the ratio of observed to predicted annual payments per beneficiary for common cardiac services (outpatient intensity index). The median (interquartile range) outpatient intensity index was 1.00 (0.81-1.24). Mean payments for beneficiaries attributed to practices in the highest (Q4) and lowest (Q1) quartile of outpatient intensity were: all cardiac payments (Q4 $1272 vs Q1 $581; ratio, 2.2); cardiac catheterization (Q4 $215 vs Q1 $64; ratio, 3.4); myocardial perfusion imaging (Q4 $253 vs Q1 $83; ratio, 3.0); and electrophysiology device procedures (Q4 $353 vs Q1 $142; ratio, 2.5). The adjusted odds ratios (95% CI) for 1 incremental quartile of outpatient intensity for each outcome was: cardiac surgical/procedural hospitalization (1.09 [1.09, 1.10]); cardiac medical hospitalization (1.00 [0.99, 1.00]); noncardiac hospitalization (0.99 [0.99, 0.99]); and death at 1 year (1.00 [0.99, 1.00]). CONCLUSION: Substantial variation in the intensity of outpatient care exists at the cardiology practice level, and higher intensity is not associated with reduced mortality or hospitalizations. Outpatient cardiac care is a potentially important target for efforts to improve efficiency in the Medicare population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: We tested the hypothesis that intraventricular hemorrhage (IVH) is associated with incontinence and gait disturbance among survivors of intracerebral hemorrhage (ICH) at 3-month follow-ups. METHODS: The Genetic and Environmental Risk Factors for Hemorrhagic Stroke study was used as the discovery set. The Ethnic/Racial Variations of Intracerebral Hemorrhage study served as a replication set. Both studies performed prospective hot-pursuit recruitment of ICH cases with 3-month follow-up. Multivariable logistic regression analyses were computed to identify risk factors for incontinence and gait dysmobility at 3 months after ICH. RESULTS: The study population consisted of 307 ICH cases in the discovery set and 1,374 cases in the replication set. In the discovery set, we found that increasing IVH volume was associated with incontinence (odds ratio [OR] 1.50; 95% confidence interval [CI] 1.10-2.06) and dysmobility (OR 1.58; 95% CI 1.17-2.15) after controlling for ICH location, initial ICH volume, age, baseline modified Rankin Scale score, sex, and admission Glasgow Coma Scale score. In the replication set, increasing IVH volume was also associated with both incontinence (OR 1.42; 95% CI 1.27-1.60) and dysmobility (OR 1.40; 95% CI 1.24-1.57) after controlling for the same variables. CONCLUSION: ICH subjects with IVH extension are at an increased risk for developing incontinence and dysmobility after controlling for factors associated with severity and disability. This finding suggests a potential target to prevent or treat long-term disability after ICH with IVH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcription factor Ets-1 is implicated in various physiological processes and invasive pathologies. We identified a novel variant of ets-1, ets-1Delta(III-VI), resulting from the alternative splicing of exons III to VI. This variant encodes a 27 kDa isoform, named Ets-1 p27. Ets-1 p27 lacks the threonine-38 residue, the Pointed domain and the transactivation domain, all of which are required for the transactivation of Ets-1 target genes. Both inhibitory domains surrounding the DNA-binding domain are conserved, suggesting that Ets-1 p27, like the full-length Ets-1 p51 isoform, is autoinhibited for DNA binding. We showed that Ets-1 p27 binds DNA in the same way as Ets-1 p51 does and that it acts both at a transcriptional and a subcellular localization level, thereby constituting a dual-acting dominant negative of Ets-1 p51. Ets-1 p27 blocks Ets-1 p51-mediated transactivation of target genes and induces the translocation of Ets-1 p51 from the nucleus to the cytoplasm. Furthermore, Ets-1 p27 overexpression represses the tumor properties of MDA-MB-231 mammary carcinoma cells in correlation with the known implication of Ets-1 in various cellular mechanisms. Thus the dual-acting dominant-negative function of Ets-1 p27 gives to the Ets-1 p27/Ets-1 p51 ratio a determining effect on cell fate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El inicio del estudio de la proporción de nacimientos de niños y niñas (sex ratio) comienza en el siglo XVIII y ha ocupado a grandes matemáticos. En 1712 John Arbuthnott ya trató de explicar el hecho comprobado de que el número anual de nacimientos de niños superaba al de niñas. Esto supone el primer ejemplo de un contraste de significación y el germen de la técnica de los contrastes de hipótesis estadísticas. El objetivo de este artículo es mostrar estos inicios y reflexionar sobre su utilidad didáctica hoy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut-edge weight, however it has been shown that for certain classes of solution algorithm, the convergence of the solver is strongly influenced by the subdomain aspect ratio. In this paper therefore, we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hotly debated issue in the area of aviation safety is the number of cabin crew members required to evacuate an aircraft in the event of an emergency. Most countries regulate the minimum number required for the safe operation of an aircraft, but these rulings are based on little if any scientific evidence. Another issue of concern is the failure rate of exits and slides. This paper examines these issues using the latest version of Aircraft Accident Statistics and Knowledge database AASK V4.0, which contains information from 105 survivable crashes and more than 2,000 survivors, including accounts from 155 cabin crew members.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A practical CFD method is presented in this study to predict the generation of toxic gases in enclosure fires. The model makes use of local combustion conditions to determine the yield of carbon monoxide, carbon dioxide, hydrocarbon, soot and oxygen. The local conditions used in the determination of these species are the local equivalence ratio (LER) and the local temperature. The heat released from combustion is calculated using the volumetric heat source model or the eddy dissipation model (EDM). The model is then used to simulate a range of reduced-scale and full-scale fire experiments. The model predictions for most of the predicted species are then shown to be in good agreement with the test results