876 resultados para Soft real-time distributed systems
Resumo:
This paper describes work towards the deployment of flexible self-management into real-time embedded systems. A challenging project which focuses specifically on the development of a dynamic, adaptive automotive middleware is described, and the specific self-management requirements of this project are discussed. These requirements have been identified through the refinement of a wide-ranging set of use cases requiring context-sensitive behaviours. A sample of these use-cases is presented to illustrate the extent of the demands for self-management. The strategy that has been adopted to achieve self-management, based on the use of policies is presented. The embedded and real-time nature of the target system brings the constraints that dynamic adaptation capabilities must not require changes to the run-time code (except during hot update of complete binary modules), adaptation decisions must have low latency, and because the target platforms are resource-constrained the self-management mechanism have low resource requirements (especially in terms of processing and memory). Policy-based computing is thus and ideal candidate for achieving the self-management because the policy itself is loaded at run-time and can be replaced or changed in the future in the same way that a data file is loaded. Policies represent a relatively low complexity and low risk means of achieving self-management, with low run-time costs. Policies can be stored internally in ROM (such as default policies) as well as externally to the system. The architecture of a designed-for-purpose powerful yet lightweight policy library is described. A suitable evaluation platform, supporting the whole life-cycle of feasibility analysis, concept evaluation, development, rigorous testing and behavioural validation has been devised and is described.
Resumo:
The original article is available as an open access file on the Springer website in the following link: http://link.springer.com/article/10.1007/s10639-015-9388-2
Resumo:
The AMSR-E satellite data and in-situ data were applied to retrieve sea surface air temperature (Ta) over the Southern Ocean. The in-situ data were obtained from the 24~(th) -26~(th) Chinese Antarctic Expeditions during 2008-2010. First, Ta was used to analyze the relativity with the bright temperature (Tb) from the twelve channels of AMSR-E, and no high relativity was found between Ta and Tb from any of the channels. The highest relativity was 0.38 (with 23.8 GHz). The dataset for the modeling was obtained by using in-situ data to match up with Tb, and two methods were applied to build the retrieval model. In multi-parameters regression method, the Tbs from 12 channels were used to the model and the region was divided into two parts according to the latitude of 50°S. The retrieval results were compared with the in-situ data. The Root Mean Square Error (RMS) and relativity of high latitude zone were 0.96℃and 0.93, respectively. And those of low latitude zone were 1.29 ℃ and 0.96, respectively. Artificial neural network (ANN) method was applied to retrieve Ta.The RMS and relativity were 1.26 ℃ and 0.98, respectively.
Resumo:
Structural and magnetic properties of thin Mn films on the Fe(001) surface have been investigated by a combination of photoelectron spectroscopy and computer simulation in the temperature range 300 Kless than or equal toTless than or equal to750 K. Room-temperature as deposited Mn overlayers are found to be ferromagnetic up to 2.5-monolayer (ML) coverage, with a magnetic moment parallel to that of the iron substrate. The Mn atomic moment decreases with increasing coverage, and thicker samples (4-ML and 4.5-ML coverage) are antiferromagnetic. Photoemission measurements performed while the system temperature is rising at constant rate (dT/dtsimilar to0.5 K/s) detect the first signs of Mn-Fe interdiffusion at T=450 K, and reveal a broad temperature range (610 Kless than or equal toTless than or equal to680 K) in which the interface appears to be stable. Interdiffusion resumes at Tgreater than or equal to680 K. Molecular dynamics and Monte Carlo simulations allow us to attribute the stability plateau at 610 Kless than or equal toTless than or equal to680 K to the formation of a single-layer MnFe surface alloy with a 2x2 unit cell and a checkerboard distribution of Mn and Fe atoms. X-ray-absorption spectroscopy and analysis of the dichroic signal show that the alloy has a ferromagnetic spin structure, collinear with that of the substrate. The magnetic moments of Mn and Fe atoms in the alloy are estimated to be 0.8mu(B) and 1.1mu(B), respectively.
Resumo:
Explicit finite difference (FD) schemes can realise highly realistic physical models of musical instruments but are computationally complex. A design methodology is presented for the creation of FPGA-based micro-architectures for FD schemes which can be applied to a range of applications with varying computational requirements, excitation and output patterns and boundary conditions. It has been applied to membrane and plate-based sound producing models, resulting in faster than real-time performance on a Xilinx XC2VP50 device which is 10 to 35 times faster than general purpose and DSP processors. The models have developed in such a way to allow a wide range of interaction (by a musician) thereby leading to the possibility of creating a highly realistic digital musical instrument.
Resumo:
Background. Invasive Candida infection among nonneutropenic, critically ill adults is a clinical problem that has received increasing attention in recent years. Poor performance of extant diagnostic modalities has promoted risk-based, preemptive prescribing in view of the poor outcomes associated with inadequate or delayed antifungal therapy; this risks unnecessary overtreatment. A rapid, reliable diagnostic test could have a substantial impact on therapeutic practice in this patient population.
Methods. Three TaqMan-based real-time polymerase chain reaction assays were developed that are capable of detecting the main medically important Candida species, categorized according to the likelihood of fluconazole susceptibility. Assay 1 detected Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida dubliniensis. Assays 2 and 3 detected Candida glabrata and Candida krusei, respectively. The clinical performance of these assays, applied to serum, was evaluated in a prospective trial of nonneutropenic adults in a single intensive care unit.
Results. In all, 527 specimens were obtained from 157 participants. All 3 assays were run in parallel for each specimen; they could be completed within 1 working day. Of these, 23 specimens were obtained from 23 participants categorized as having proven Candida infection at the time of sampling. If a single episode of Candida famata candidemia was excluded, the estimated clinical sensitivity, specificity, and positive and negative predictive values of the assays in this trial were 90.9%, 100%, 100% and 99.8%, respectively.
Conclusions. These data suggest that the described assays perform well in this population for enhancing the diagnosis of candidemia. The extent to which they may affect clinical outcomes, prescribing practice, and cost-effectiveness of care remains to be ascertained.
Resumo:
Data identification is a key task for any Internet Service Provider (ISP) or network administrator. As port fluctuation and encryption become more common in P2P traffic wishing to avoid identification, new strategies must be developed to detect and classify such flows. This paper introduces a new method of separating P2P and standard web traffic that can be applied as part of a data mining process, based on the activity of the hosts on the network. Unlike other research, our method is aimed at classifying individual flows rather than just identifying P2P hosts or ports. Heuristics are analysed and a classification system proposed. The accuracy of the system is then tested using real network traffic from a core internet router showing over 99% accuracy in some cases. We expand on this proposed strategy to investigate its application to real-time, early classification problems. New proposals are made and the results of real-time experiments compared to those obtained in the data mining research. To the best of our knowledge this is the first research to use host based flow identification to determine a flows application within the early stages of the connection.