929 resultados para Single Phase Grid Connected Inverter
Resumo:
Modern CMOS radio frequency (RF) Receivers have enabled efficient and increasing applications. The main requirement is to have system in a single chip, in order to minimize area and cost. For the purpose it is required the development of inductorless circuits for the key blocks of an RF receiver. Examples of this key blocks are RC oscillators, RF band pass filters, and Low Noise Amplifiers. The present dissertation presents an inductorless wideband MOSFET-only RF Non-Gyrator Type of Active Inductors with low area, low cost, and very low power, capable of covering the whole WMTS, and ISM, band and intended for biomedical applications. The proposed circuit is based on a floating capacitor connected between two controlled current sources. The first current source, which is controlled by the circuit input voltage, has two objectives: supply current to the capacitor (
Resumo:
This paper presents the conversion process of a traditional Internal Combustion Engine vehicle into an Electric Vehicle. The main constitutive elements of the Electric Vehicle are presented. The developed powertrain uses a three-phase inverter with Field Oriented Control and space vector modulation. The developed on-board batteries charging system can operate in Grid-to-Vehicle and Vehicle-to-Grid modes. The implemented prototypes were tested, and experimental results are presented. The assembly of these prototypes in the vehicle was made in accordance with the Portuguese legislation about vehicles conversion, and the main adopted solutions are presented.
Resumo:
This paper presents a comprehensive comparison of a current-source converter and a voltage-source converter for three-phase electric vehicle (EV) fast battery chargers. Taking into account that the current-source converter (CSC) is a natural buck-type converter, the output voltage can assume a wide range of values, which varies between zero and the maximum instantaneous value of the power grid phase-to-phase voltage. On the other hand, taking into account that the voltage-source converter (VSC) is a natural boost-type converter, the output voltage is always greater than the maximum instantaneous value of the power grid phase-to-phase voltage, and consequently, it is necessary to use a dc-dc buck-type converter for applications as EV fast battery chargers. Along the paper is described in detail the principle of operation of both the CSC and the VSC for EV fast chargers, as well as the main equations of the power theory and current control strategies. The comparison between both converters is mainly established in terms of the total harmonic distortion of the grid current and the estimated efficiency for a range of operation between 10 kW and 50 kW.
Resumo:
This paper presents a three-phase three-level fast battery charger for electric vehicles (EVs) based in a current-source converter (CSC). Compared with the traditional voltage-source converters used for fast battery chargers, the CSC can be seen as a natural buck-type converter, i.e., the output voltage can assume a wide range of values, which varies between zero and the maximum instantaneous value of the power grid phase-to-phase voltage. Moreover, using the CSC it is not necessary to use a dc-dc back-end converter in the battery side, and it is also possible to control the grid current in order to obtain a sinusoidal waveform, and in phase with the power grid voltage (unitary power factor). Along the paper is described in detail the proposed CSC for EVs fast battery charging systems: the circuit topology, the power control theory, the current control strategy and the grid synchronization algorithm. Several simulation results of the EV fast battery charger operating with a maximum power of 50 kW are presented.
Resumo:
This paper presents the development of the power electronics needed for the interaction between the electrical generator of a wind turbine and an isolated ac micro grid. In this system there are basically two types of receptors for the energy produced by the wind turbine, which are the loads connected to the isolated micro grid and the batteries used to store energy. There are basically two states in which the system will work. One of the states is when there is enough wind power to supply the loads and the extra energy is used to charge the batteries. The other state is when there is low wind power and the batteries have to compensate the lack of power, so that the isolated micro grid has enough power to supply at least the priority loads. In this paper are presented the hardware and the control algorithm for the developed system. The topology was previously tested in computer simulations, using the software PSIM 9.0, and then validated with the implementation of a laboratory prototype.
Simultaneous detection of cyclopiazonic acid and aflatoxin B1 by HPLC in methanol/water mobile phase
Resumo:
A simple procedure for the simultaneous detection of cyclopiazonic acid (CPA) and aflatoxin B1 from fungal extracts is presented, using a methanol and water mobile phase and fluorescence detection. This methodology has been tested with standard solutions of both mycotoxins CPA and Aflatoxin B1 and with methanolic extracts of Aspergillus section Flavi strains, previously characterized for their mycotoxin production profile. Previously available methodology required the use of two different chromatographic runs for these mycotoxins, with distinct columns and detectors (fluorescence detection with a post-column photochemical derivatization (PHRED) for aflatoxin B1 and UV detection for CPA). The proposed method detects both mycotoxins in a single run. Data from these assays will be presented and discussed.
Resumo:
Dissertação de mestrado em Bioquímica Aplicada (área de especialização em Biotecnologia)
Resumo:
Tese de Doutoramento em Engenharia Civil.
Resumo:
A more or less detailed study of the spermatogenesis in six species of Hemiptera belonging to the Coreid Family is made in the present paper. The species studied and their respective chromosome numbers were: 1) Diactor bilineatus (Fabr.) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationaliv in the first division and passing undivided to one pole in the second. 2) Lcptoglossus gonagra (Fabr.) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationally in the first division and passing undivided to one pole in the second. 3) Phthia picta (Drury) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationally in the first division and passing undivided to one pole in the second. 4) Anisocelis foliacea Fabr. : spermatogonia with 26 + X fthe highest mumber hitherto known in the Family), primary .spermatocytes with 13 + X, X dividing equationally in the first division an passing undivided to one pole in the second. 5) Pachylis pharaonis (Herbtst) : spermatogonia with 16 + X, primary spermatocytes with 8 + X. Behaviour of the heteroehromosome not referred. 6) Pachylis laticornis (Fabr.) : spermatogonia with 14 + X, primary spermatocytes with 7 + X, X passing undivided to one pole in the first division and therefore secondary spermatocytes with 7 + X and 7 chromosomes. General results and conclusions a) Pairing modus of the chromosomes (Telosynapsis or Farasynapsis ?) - In several species of the Coreld bugs the history of the chromosomes from the diffuse stage till diakinesis cannot be follewed in detail due specially to the fact that lhe bivalents, as soon as they begin to be individually distinct they appear as irregular and extremely lax chromatic areas, which through an obscure process give rise to the diakinesis and then to the metaphase chomosomes. Fortunately I was able to analyse the genesis of the cross-shaped chromosomes, becoming thus convinced that even in the less favorable cases like that of Phthia, in which the crosses develop from four small condensation areas of the diffuse chromosomes, nothing in the process permit to interpret the final results as being due to a previous telosynaptic pairing. In the case of long bivalents formed by two parallel strands intimately united at both endsegments and more or less widely open in the middle (Leptoglossus, Pachylis), I could see that the lateral arms of the crosses originate from condensation centers created by a torsion or bending in the unpaired parts of the chromosomes In the relatively short bivalents the lateral branches of the cross are formed in the middle but in the long ones, whose median opening is sometimes considerable, two asymetrical branches or even two independent crosses may develop in the same pair. These observations put away the idea of an end-to-end pairing of the chromosomes, since if it had occured the lateral arms of the crosses would always be symetrical and median and never more than two. The direct observation of a side- toside pairing of the chromosomal threads at synizesis, is in foil agreement with the complete lack of evidence in favour of telosynapsis. b) Anaphasic bridges and interzonal connections - The chromosomes as they separate from each other in anaphase they remain connected by means of two lateral strands corresponding to the unpaired segmenas observed in the bivalents at the stages preceding metaphase. In the early anaphase the chromosomes again reproduce the form they had in late diafcinesis. The connecting threads which may be thick and intensely coloured are generally curved and sometimes unequal in lenght, one being much longer than the other and forming a loop outwardly. This fact points to a continuous flow of chromosomal substance independently from both chromosomes of the pair rather than to a mechanical stretching of a sticky substance. At the end of anaphase almost all the material which formed the bridges is reduced to two small cones from whose vertices a very fine and pale fibril takes its origin. The interzonal fibres, therefore, may be considered as the remnant of the anaphasic bridges. Abnormal behaviour of the anaphase chromosomes showed to be useful in aiding the interpretation of normal aspects. It has been suggested by Schrader (1944) "that the interzonal is nothing more than a sticky coating of the chromosome which is stretched like mucilage between the daughter chromosomes as they move further and further apart". The paired chromosomes being enclosed in a commom sheath, as they separate they give origin to a tube which becomes more and more stretched. Later the walls of the tube collapse forming in this manner an interzonal element. My observations, however, do not confirm Schrader's tubular theory of interzonal connections. In the aspects seen at anaphase of the primary spermatocytes and described in this paper as chromosomal bridges nothing suggests a tubular structure. There is no doubt that the chromosomes are here connected by two independent strands in the first division of the spermatocytes and by a single one in the second. The manner in which the chromosomes separate supports the idea of transverse divion, leaving little place for another interpretation. c) Ptafanoeomc and chromatoid bodies - The colourabtlity of the plasmosome in Diactor and Anisocelis showed to be highly variable. In the latter species, one may find in the same cyst nuclei provided with two intensely coloured bodies, the larger of which being the plasmosome, sided by those in which only the heterochromosome took the colour. In the former one the plasmosome strongly coloured seen in the primary metaphase may easily be taken for a supernumerary chromosome. At anaphase this body stays motionless in the equator of the cell while the chromosomes are moving toward the poles. There, when intensely coloured ,it may be confused with the heterochromosome of the secondary spermatocytes, which frequently occupies identical position in the corresponding phase, thus causing missinterpretation. In its place the plasmosome may divide into two equal parts or pass undivided to one cell in whose cytoplasm it breaks down giving rise to a few corpuscles of unequal sizes. In Pachylis pharaonis, as soon as the nuclear membrane breate down, the plasmosome migrates to a place in the periphery of the cell (primary spermatocyte), forming there a large chromatoid body. This body is never found in the cytoplasm prior to the dissolution of the nuclear membrane. It is certain that chromatoid bodies of different origin do exist. Here, however, we are dealing, undoubtedly, with true plasmosomes. d) Movement of the heterochromosome - The heterochromosome in the metaphase of the secondary spermatocytes may occupy the most different places. At the time the autosomes prient themselves in the equatorial plane it may be found some distance apart in this plane or in any other plane and even in the subpolar and polar regions. It remains in its place during anaphase. Therefore, it may appear at the same level with the components of one of the anaphase plates (synchronism), between both plates (succession) or between one plate and tbe pole (precession), what depends upon the moment the cell was fixed. This does not mean that the heterochromosome sometimes moves as quickly as the autosomes, sometimes more rapidly and sometimes less. It implies, on the contrary, that, being anywhere in the cell, the heterochromosome m he attained and passed by the autosomes. In spite of being almost motionless the heterochromosome finishes by being enclosed in one of the resulting nuclei. Consequently, it does move rapidly toward the group formed by the autosomes a little before anaphase is ended. This may be understood assuming that the heterochromosome, which do not divide, having almost inactive kinetochore cannot orient itself, giving from wherever it stays, only a weak response to the polar influences. When in the equator it probably do not perform any movement in virtue of receiving equal solicitation from both poles. When in any other plane, despite the greater influence of the nearer pole, the influence of the opposite pole would permit only so a slow movement that the autosomes would soon reach it and then leave it behind. It is only when the cell begins to divide that the heterochromosome, passing to one of the daughter cells scapes the influence of the other and thence goes quickly to join the autosomes, being enclosed with them in the nucleus formed there. The exceptions observed by BORING (1907) together with ; the facts described here must represent the normal behavior of the heterocromosome of the Hemiptera, the greater frequency of succession being the consequence of the more frequent localization of the heterochromosome in the equatorial plane or in its near and of the anaphase rapidity. Due to its position in metaphase the heterochromosome in early anaphase may be found in precession. In late anaphase, oh the contrary ,it appears almost always in succession. This is attributed to the fact of the heterochromosome being ordinairily localized outside the spindle area it leaves the way free to the anaphasic plate moving toward the pole. Moreover, the heterochromosome being a round element approximately of the size of the autosomes, which are equally round or a little longer in the direction of the movement, it can be passed by the autosomes even when it stands in the area of the spindle, specially if it is not too far from the equatorial plane. e) The kinetochore - This question has been fully discussed in another paper (PIZA 1943a). The facts treated here point to the conclusion that the chromosomes of the Coreidae, like those of Tityus bahiensis, are provided with a kinetochore at each end, as was already admitted by the present writer with regard to the heterochromosome of Protenor. Indeed, taking ipr granted the facts presented in this paper, other cannot be the interpretation. However, the reasons by which the chromosomes of the species studied here do not orient themselves at metaphase of the first division in the same way as the heterochromosome of Protenor, that is, with the major axis parallelly to the equatorial plane, are claiming for explanation. But, admiting that the proximity of the kinetochores at the ends of chromosomes which do not separate until the second division making them respond to the poles as if they were a single kinetochore ,the explanation follows. (See PIZA 1943a). The median opening of the diplonemas when they are going to the diffuse stage as well as the reappearance of the bivalents always united at the end-segments and open in the middle is in full agreement with the existence of two terminal kinetochores. The same can be said with regard to the bivalents which join their extremities to form a ring.
Resumo:
In this paper an account is given of the principal facts observer in the meiosis of Euryophthalmus rufipennis Laporte which afford some evidence in favour of the view held by the present writer in earlier publications regarding the existence of two terminal kinetochores in Hem ip ter an chromosomes as well as the transverse division of the chromosomes. Spermatogonial mitosis - From the beginning of prophase until metaphase nothing worthy of special reference was observed. At anaphase, on the contrary, the behavior of the chromosomes deserves our best attention. Indeed, the chromoso- mes, as soon as they begin to move, they show both ends pronouncedly turned toward the poles to which they are connected by chromosomal fibres. So a premature and remarkable bending of the chromosomes not yet found in any other species of Hemiptera and even of Homoptera points strongly to terminally localized kinetochores. The explanation proposed by HUGHES-SCHRADER and RIS for Nautococcus and by RIS for Tamalia, whose chromosomes first become bent late in anaphase do not apply to chromosomes which initiate anaphase movement already turned toward the corresponding pole. In the other hand, the variety of positions assumed by the anaphase chromosomes of Euryophthalmus with regard to one another speaks conclusively against the idea of diffuse spindle attachments. First meiotic division - Corresponding to the beginning of the story of the primary spermatocytes cells are found with the nucleus entirelly filled with leptonema threads. Nuclei with thin and thick threads have been considered as being in the zygotente phase. At the pachytene stage the bivalents are formed by two parallel strands clearly separated by a narrow space. The preceding phases differ in nothing from the corresponding orthodox ones, pairing being undoubtedly of the parasynaptic type. Formation of tetrads - When the nuclei coming from the diffuse stage can be again understood the chromosomes reappear as thick threads formed by two filaments intimately united except for a short median segment. Becoming progressively shorter and thicker the bivalents sometimes unite their extremities forming ring-shaped figures. Generally, however, this does not happen and the bivalents give origin to more or less condensed characteristic Hemipteran tetrads, bent at the weak median region. The lateral duplicity of the tetrads is evident. At metaphase the tetrads are still bent and are connected with both poles by their ends. The ring-shaped diakinesis tetrads open themselves out before metaphase, showing in this way that were not chiasmata that held their ends together. Anaphase proceeds as expected. If we consider the median region of the tetrads as being terminalized chiasmata, then the chromosomes are provided with a single terminal kinetochore. But this it not the case. A critical analysis of the story of the bivalents before and after the diffuse stage points to the conclusion that they are continuous throughout their whole length. Thence the chromosomes are considered as having a kinetochore at each end. Orientation - There are some evidences that Hemipteran chromosomes are connected by chiasmata. If this is true, the orientation of the tetrads may be understood in the following manner: Chiasmata being hindered to scape by the terminal kinetochores accumulate at the ends of the tetrads, where condensation begins. Repulsion at the centric ends being prevented by chiasmata the tetrads orient themselves as if they were provided with a single kinetochore at each extremity, taking a position parallelly to the spindle axis. Anaphase separation - Anaphase separation is consequently due to a transverse division of the chromosomes. Telophase and secund meiotic division - At telophase the kinetochore repeli one another following the moving apart of the centosomes, the chiasmata slip toward the acentric extremities and the chromosomes rotate in order to arrange themselves parallelly to the axis of the new spindle. Separation is therefore throughout the pairing plane. Origin of the dicentricity of the chromosomes - Dicentricity of the chromosomes is ascribed to the division of the kinetochore of the chromosomes reaching the poles followed by separation and distension of the chromatids which remain fused at the acentric ends giving thus origin to terminally dicentric iso-chromosomes. Thence, the transverse division of the chromosomes, that is, a division through a plane perpendicular to the plane of pairing, actually corresponds to a longitudinal division realized in the preceding generation. Inactive and active kinetochores - Chromosomes carrying inactive kinetochore is not capable of orientation and active anaphasic movements. The heterochromosome of Diactor bilineatus in the division of the secondary spermatocytes is justly in this case, standing without fibrilar connection with the poles anywhere in the cell, while the autosomes are moving regularly. The heterochromosome of Euryophthalmus, on the contrary, having its kinetochores perfectly active ,is correctly oriented in the plane of the equator together with the autosomes and shows terminal chromosomal connection with both poles. Being attracted with equal strength by two opposite poles it cannot decide to the one way or the other remaining motionless in the equator until some secondary causes (as for instances a slight functional difference between the kinetochores) intervene to break the state of equilibrium. When Yiothing interferes to aide the heterochromosome in choosing its way it distends itself between the autosomal plates forming a fusiform bridge which sometimes finishes by being broken. Ordinarily, however, the bulky part of the heterochromosome passes to one pole. Spindle fibers and kinetic activity of chromosomal fragments - The kinetochore is considered as the unique part of the chromosome capable of being influenced by other kinetochore or by the poles. Under such influence the kinetochore would be stimulated or activited and would elaborate a sort of impulse which would run toward the ends. In this respect the chromosome may be compared to a neüròn, the cell being represented by the kinetochore and the axon by the body of the chromosome. Due to the action of the kinetochore the entire chromosome becomes also activated for performing its kinetic function. Nothing is known at present about the nature of this activation. We can however assume that some active chemical substance like those produced by the neuron and transferred to the effector passes from the kinetochore to the body of the chromosome runing down to the ends. And, like an axon which continues to transmit an impulse after the stimulating agent has suspended its action, so may the chromosome show some residual kinetic activity even after having lost its kinetochore. This is another explanation for the kinetic behavior of acentric chromosomal fragmehs. In the orthodox monocentric chromosomes the kinetic activity is greater at the kinetochore, that is, at the place of origin of the active substance than at any other place. In chromosomes provided with a kinetochore at each end the entire body may become active enough to produce chromosomal fibers. This is probably due to a more or less uniform distribution and concentration of the active substance coming simultaneously from both extremities of the chromosome.
Resumo:
Despite the huge increase in processor and interprocessor network performace, many computational problems remain unsolved due to lack of some critical resources such as floating point sustained performance, memory bandwidth, etc... Examples of these problems are found in areas of climate research, biology, astrophysics, high energy physics (montecarlo simulations) and artificial intelligence, among others. For some of these problems, computing resources of a single supercomputing facility can be 1 or 2 orders of magnitude apart from the resources needed to solve some them. Supercomputer centers have to face an increasing demand on processing performance, with the direct consequence of an increasing number of processors and systems, resulting in a more difficult administration of HPC resources and the need for more physical space, higher electrical power consumption and improved air conditioning, among other problems. Some of the previous problems can´t be easily solved, so grid computing, intended as a technology enabling the addition and consolidation of computing power, can help in solving large scale supercomputing problems. In this document, we describe how 2 supercomputing facilities in Spain joined their resources to solve a problem of this kind. The objectives of this experience were, among others, to demonstrate that such a cooperation can enable the solution of bigger dimension problems and to measure the efficiency that could be achieved. In this document we show some preliminary results of this experience and to what extend these objectives were achieved.
Resumo:
Synchronization of data coming from different sources is of high importance in biomechanics to ensure reliable analyses. This synchronization can either be performed through hardware to obtain perfect matching of data, or post-processed digitally. Hardware synchronization can be achieved using trigger cables connecting different devices in many situations; however, this is often impractical, and sometimes impossible in outdoors situations. The aim of this paper is to describe a wireless system for outdoor use, allowing synchronization of different types of - potentially embedded and moving - devices. In this system, each synchronization device is composed of: (i) a GPS receiver (used as time reference), (ii) a radio transmitter, and (iii) a microcontroller. These components are used to provide synchronized trigger signals at the desired frequency to the measurement device connected. The synchronization devices communicate wirelessly, are very lightweight, battery-operated and thus very easy to set up. They are adaptable to every measurement device equipped with either trigger input or recording channel. The accuracy of the system was validated using an oscilloscope. The mean synchronization error was found to be 0.39 μs and pulses are generated with an accuracy of <2 μs. The system provides synchronization accuracy about two orders of magnitude better than commonly used post-processing methods, and does not suffer from any drift in trigger generation.
Resumo:
In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity.
Resumo:
OBJECTIVE: To evaluate the antitumor activity and safety profile of plitidepsin administered as a 1h weekly intravenous (i.v.) infusion of 3.2mg/m(2) to patients with small cell lung cancer (SCLC) who relapsed or progressed after one line of chemotherapy. PATIENTS AND METHODS: This was a multicenter, open-label, single-arm, exploratory, phase II clinical trial. Treatment lasted until disease progression, unacceptable toxicity, patient refusal or treatment delay for >2 weeks. Objective response rate (primary efficacy endpoint) was evaluated according to response evaluation criteria in solid tumors (RECIST). The rate of stable disease (SD) lasting for at least 6 months and time-to-event variables were secondary endpoints of efficacy. Toxicity was assessed using National Cancer Institute Common Toxicity Criteria (NCI-CTC) version 2.0. RESULTS: Twenty pretreated SCLC patients (median age, 60 years) with extensive (n=13) or limited-stage disease (n=7) received a total of 24 treatment cycles (median, one cycle per patient; range, 1-2). Objective tumor responses were not observed and only one of the 17 evaluable patients had SD. With a median follow-up of 11.8 months, the progression-free survival and the median overall survival were 1.3 months and 4.8 months, respectively. The most troubling or common toxicities were fatigue, muscle weakness, lymphopenia, anemia (no patients showed neutropenia), and asymptomatic, non-cumulative increase of transaminases levels and alkaline phosphatase. CONCLUSION: This clinical trial shows that a cycle of 1h weekly i.v. infusion of plitidepsin (3.2mg/m(2)) was generally well tolerated other than fatigue and muscle weakness in patients with pretreated SCLC. One patient died due to multi-organ failure. The absence of antitumor activity found here precludes further studies of this plitidepsin schedule as second-line single-agent treatment of SCLC.
Resumo:
A Phase 1 double-blind placebo-controlled study was performed to evaluate a vaccine against American tegumentary leishmaniasis in 61 healthy male volunteers. Side effects and the immune response to the vaccine were evaluated, with 1- and 2- dose schemes, with intervals of 7 or 21 days, each dose containing 1440 mg of protein N antigen of a single strain of Leishmania amazonensis (PH 8) diluted in merthiolated saline (1:10,000). Merthiolated saline and an inert substance were used as placebos. No significant clinical alterations were found following the respective injections in the vaccinated individuals as compared to the placebos, except for local pain, which was associated significantly with injection of the vaccine. The laboratory alterations we observed bore no association with the clinical findings and were unimportant. We observed no differences between the groups with regard to seroconversion or the Montenegro skin test. However, the group that received a single dose of the vaccine and the one that received two doses with a 21-day interval displayed cutaneous induration significantly larger than in the control group, with 100%, 100%, and 66% conversion in the skin test, respectively. We concluded that the vaccine does not present any major side effect that would contraindicate its use in healthy individuals.