729 resultados para Shaft sinking.
Resumo:
Waikiki, Hawaii, faces declining tourism numbers, sinking property values, and possibly a destination entering the decline phase of the tourism life cycle. Seeking the advice of world renowned planners, it has set its sights on a new master plan aimed at correcting much that seems to have gone wrong
Resumo:
We provide a compilation of downward fluxes (total mass, POC, PON, BSiO2, CaCO3, PIC and lithogenic/terrigenous fluxes) from over 6000 sediment trap measurements distributed in the Atlantic Ocean, from 30 degree North to 49 degree South, and covering the period 1982-2011. Data from the Mediterranean Sea are also included. Data were compiled from different sources: data repositories (BCO-DMO, PANGAEA), time series sites (BATS, CARIACO), published scientific papers and/or personal communications from PI's. All sources are specifed in the data set. Data from the World Ocean Atlas 2009 were extracted to provide each flux observation with contextual environmental data, such as temperature, salinity, oxygen (concentration, AOU and percentage saturation), nitrate, phosphate and silicate.
Resumo:
Anthropogenic carbon dioxide (CO2) emissions are reducing the pH in the world's oceans. The plankton community is a key component driving biogeochemical fluxes, and the effect of increased CO2 on plankton is critical for understanding the ramifications of ocean acidification on global carbon fluxes. We determined the plankton community composition and measured primary production, respiration rates and carbon export (defined here as carbon sinking out of a shallow, coastal area) during an ocean acidification experiment. Mesocosms (~ 55 m3) were set up in the Baltic Sea with a gradient of CO2 levels initially ranging from ambient (~ 240 µatm), used as control, to high CO2 (up to ~ 1330 µatm). The phytoplankton community was dominated by dinoflagellates, diatoms, cyanobacteria and chlorophytes, and the zooplankton community by protozoans, heterotrophic dinoflagellates and cladocerans. The plankton community composition was relatively homogenous between treatments. Community respiration rates were lower at high CO2 levels. The carbon-normalized respiration was approximately 40 % lower in the high CO2 environment compared with the controls during the latter phase of the experiment. We did not, however, detect any effect of increased CO2 on primary production. This could be due to measurement uncertainty, as the measured total particular carbon (TPC) and combined results presented in this special issue suggest that the reduced respiration rate translated into higher net carbon fixation. The percent carbon derived from microscopy counts (both phyto- and zooplankton), of the measured total particular carbon (TPC) decreased from ~ 26 % at t0 to ~ 8 % at t31, probably driven by a shift towards smaller plankton (< 4 µm) not enumerated by microscopy. Our results suggest that reduced respiration lead to increased net carbon fixation at high CO2. However, the increased primary production did not translate into increased carbon export, and did consequently not work as a negative feedback mechanism for increasing atmospheric CO2 concentration.
Resumo:
The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments1. This is important in regulating marine carbon cycling and ocean-atmosphere CO2 exchange2. The present rise in atmospheric CO2 levels3 causes significant changes in surface ocean pH and carbonate chemistry4. Such changes have been shown to slow down calcification in corals and coralline macroalgae5,6, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica . This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
The acceleration of technological change and the process of globalization has intensified competition and the need for new products (goods and services), resulting in growing concern for organizations in the development of technological, economic and social advances. This work presents an overview of the development of wind energy-related technologies and design trends. To conduct this research, it is (i) a literature review on technological innovation, technological forecasting methods and fundamentals of wind power; (ii) the analysis of patents, with the current technology landscape studied by means of finding information in patent databases; and (iii) the preparation of the map of technological development and construction of wind turbines of the future trend information from the literature and news from the sector studied. Step (ii) allowed the study of 25 644 patents between the years 2003-2012, in which the US and China lead the ranking of depositors and the American company General Electric and the Japanese Mitsubishi stand as the largest holder of wind technology. Step (iii) analyzed and identified that most of the innovations presented in the technological evolution of wind power are incremental product innovations to market. The proposed future trends shows that the future wind turbines tend to have a horizontal synchronous shaft, which with the highest diameter of 194m and 164m rotor nacelle top, the top having 7,5MW generation. The materials used for the blades are new materials with characteristics of low density and high strength. The towers are trend with hybrid materials, uniting the steel to the concrete. This work tries to cover the existing gap in the gym on the use of technological forecasting techniques for the wind energy industry, through the recognition that utilize the patent analysis, analysis of scientific articles and stories of the area, provide knowledge about the industry and influencing the quality of investment decisions in R & D and hence improves the efficiency and effectiveness of wind power generation
Resumo:
This Ph.D. thesis addresses current issues with ichnotaxonomic practice, and characterizes an exceptionally well preserved ichnological assemblage from the Carboniferous Stainmore Formation, Northumberland, United Kingdom. Samples were collected from closely localized float representative of various units throughout the succession, which was deposited in a storm-dominated marine shoreface. Three dominant ichnotaxa were selected for three-dimensional morphological analysis due to their complicated morphology and/or unclear taxonomic status: 1) Dactyloidites jordii isp. nov.; 2) Beaconites capronus, and; 3) Neoeione moniliformis comb. nov. Using serial grinding and photography, these ichnotaxa were ground and modelled in true colour. High-resolution models of three taxa produced in this study are the basis of the first complete three-dimensional consideration of the traces, and forms the basis for refined palaeobiological and ethological analysis of these taxa. Dactyloidites jordii isp. nov. is a stellate to palmate burrow composed of numerous long, narrow rays that exhibit three orders of branching arranged into tiered galleries radiating from a central shaft. It is considered to be the feeding structure produced by a vermiform organism. Beaconites capronus is a winding trace with distinctly chevron-shaped, meniscate backfill demonstrated herein to backfill the vertical shafts associated with its burrows in a comparable fashion to the horizontal portion of the burrow. This lack of a surface connection would result in the trace making organism being exposed to low-oxygen porewater. Coping with this porewater dysoxia could be approached by burrowing organisms in a number of ways: 1) revisiting the sediment-water interface; 2) creating periodic shafts; or 3) employing anaerobic metabolism. Neoeione moniliformis was originally introduced as Eione moniliformis, however, the genus Eione Tate, 1859 is a junior homonym of Eione Rafinesque, 1814. This led to the transfer of Eione moniliformis to Parataenidium. Through careful examination and three-dimensional characterization of topotypes, the transfer to Parataenidium moniliformis is demonstrated herein to be problematic, as Parataenidium refers to primarily horizontal burrows with two distinct layers and Eione moniliformis is composed of one distinct level. As such, the new ichnogenus Neoeione is created to accommodate Neoeione moniliformis.
Resumo:
Polonium-210 and Lead-210 have been measured in the water column and on suspended particulate matter during the POLARSTERN cruise ARK-XXII/2. The data have been submitted to Pangaea following a Polonium-Lead intercalibration exercise organized by GEOTRACES, where the AWI lab results range within the data standard deviation from 10 participating labs. Polonium-210 and Lead-210 in the ocean can be used to identify the sources and sinks of suspended matter. In seawater, Polonium-210 (210Po) and Lead-210 (210Pb) are produced by stepwise radioactive decay of Uranium-238. 210Po (138 days half life) and 210Pb (22.3 years half life) have high affinities for suspended particles. Those radionuclides are present in dissolved form and adsorbed onto particles. Following adsorption onto particle surfaces, 210Po especially is transported into the interior of cells where it bonds to proteins. In this way, 210Po also accumulates in the food chain. 210Po is therefore considered to be a good tracer for POC, and traces particle export over a timescale of month. 210Pb (22.3 years half life) adsorbs preferably onto structural components of cells, biogenic silica and lithogenic particles, and is therefore a better tracer more rapidly sinking matter. Our goal during ARK XXII/2 was to trace pathways of particulate and dissolved matter leaving the Siberian Shelf. The pathways of particulate and dissolved matter will be followed by the combined use of 210Po and 234Th as a tracer pair (and perhaps 210Pb) for particle flux (Cai, P.; Rutgers van der Loeff, MM (2008) doi:10.1594/PANGAEA.708354). This information gathered from the water column will be complemented with the results of the 210Po-210Pb study in sea ice (Camara-Mor, P, Instituto de Ciencias del Mar-SCIC, Barcelona, Spain) to provide a more thorough picture of particle transport from the shelf to the open sea and from surface to depth.
Resumo:
The distribution of dissolved zinc (Zn) was investigated in the Atlantic sector of the Southern Ocean in the austral autumn of 2008 as part of the IPY GEOTRACES expedition ZERO & DRAKE. Research focused on transects across the major frontal systems along the Zero Meridian and across the Drake Passage. There was a strong gradient in surface zinc concentrations observed across the Antarctic Polar Front along both transects and high zinc levels were found in surface waters throughout the Southern Ocean. Vertical profiles for dissolved Zinc showed the presence of local minima and maxima in the upper 200 m consistent with significant uptake by phytoplankton and release by zooplankton grazing, respectively. Highest deep water zinc concentrations were found in the centre of the Weddell Gyre associated with Central Intermediate Water (CIW), a water mass which is depleted in O2, elevated in CO2 and is regionally a CFC minimum. Our data suggests that the remineralization of sinking particles is a key control on the distribution of Zn in the Southern Ocean. Disappearance ratios of zinc to phosphate (Zn:P) in the upper water column increased southwards along both transects and based on laboratory studies they suggest slower growth rates of phytoplankton due to iron or light limitation. Zinc and silicate were strongly correlated throughout the study region but the disappearance ratio (Zn:Si) was relatively uniform overall except for the region close to the ice edge on the Zero Meridian.
Resumo:
The Arctic sea-ice extent reached a record minimum in September 2012. Sea-ice decline increases the absorption of solar energy in the Arctic Ocean, affecting primary production and the plankton community. How this will modulate the sinking of particulate organic carbon (POC) from the ocean surface remains a key question. We use the 234Th/238U and 210Po/210Pb radionuclide pairs to estimate the magnitude of the POC export fluxes in the upper ocean of the central Arctic in summer 2012, covering time scales from weeks to months. The 234Th/238U proxy reveals that POC fluxes at the base of the euphotic zone were very low (2 ± 2 mmol C/m**2/d) in late summer. Relationships obtained between the 234Th export fluxes and the phytoplankton community suggest that prasinophytes contributed significantly to the downward fluxes, likely via incorporation into sea-ice algal aggregates and zooplankton-derived material. The magnitude of the depletion of 210Po in the upper water column over the entire study area indicates that particle export fluxes were higher before July/August than later in the season. 210Po fluxes and 210Po-derived POC fluxes correlated positively with sea-ice concentration, showing that particle sinking was greater under heavy sea-ice conditions than under partially ice-covered regions. Although the POC fluxes were low, a large fraction of primary production (>30%) was exported at the base of the euphotic zone in most of the study area during summer 2012, indicating a high export efficiency of the biological pump in the central Arctic. This article is protected by copyright. All rights reserved.
Resumo:
The zinc concentration of siliceous sponge spicules was determined from spicules recovered from four sediment cores spanning the last 160 kyr, from the Campbell Plateau region southeast of New Zealand. Zinc/Si results showed little difference between Holocene and glacial aged spicules. An increase in Zn/Si was observed for core Y14, where Zn/Si peaked at about 0.6 ?mol/mol during marine isotope stages 5a-5b. To better understand the role carbon export has on sponge Zn/Si, we explored the strong relationship observed between surficial sediment particulate organic carbon (POC) and the Zn/Si of sponge silica and related this to sediment trap POC flux estimates. Conversion of the Zn/Si records to benthic POC fluxes suggests that there has been little change in the amount of POC reaching Campbell Plateau sediments over the past 30 kyr. These results suggest that surface productivity over the Campbell Plateau has remained relatively low over the past 160 kyr and suggests that glacial productivity was not significantly higher than the present day. Finally, this work reveals that living marine sponges appear to act as the biological equivalents of moored sediment traps, recording the flux of POC to the seafloor by archiving zinc associated with sinking POC in the growing silica skeleton.
Resumo:
The taxonomic composition and types of particles comprising the downward particle flux were examined during the mesoscale artificial iron fertilisation experiment LOHAFEX. The experiment was conducted in low-silicate waters of the Atlantic Sector of the Southern Ocean during austral summer (January-March 2009), and induced a bloom dominated by small flagellates. Downward particle flux was low throughout the experiment, and not enhanced by addition of iron; neutrally buoyant sediment traps contained mostly faecal pellets and faecal material apparently reprocessed by mesozooplankton. TEP fluxes were low, <5 mg GX eq/m**2/day, and a few phytodetrital aggregates were found in the sediment traps. Only a few per cent of the POC flux was found in the traps consisting of intact protist plankton, although remains of taxa with hard body parts (diatoms, tintinnids, thecate dinoflagellates and foraminifera) were numerous, far more so than intact specimens of these taxa. Nevertheless, many small flagellates and coccoid cells, belonging to the pico- and nanoplankton, were found in the traps, and these small, soft-bodied cells probably contributed the majority of downward POC flux via mesozooplankton grazing and faecal pellet export. TEP likely played an important role by aggregating these small cells, and making them more readily available to mesozooplankton grazers.
Resumo:
Time-series sediment traps were deployed at 4 depths in the eastern Fram Strait from July 2007 to June 2008 to investigate variations in the magnitude and composition of the sinking particulate matter from upper waters to the seafloor. Sediment traps were deployed at 196 m in the Atlantic Water layer, at 1296 and 2364 m in the intermediate and deep waters, and at 2430 m on a benthic lander in the near-bottom layer. Fluxes of total particulate matter, particulate organic carbon, particulate organic nitrogen, biogenic matter, lithogenic matter, biogenic particulate silica, calcium carbonate, dominant phytoplankton cells, and zooplankton fecal pellets increased with depth, indicating the importance of lateral advection on fluxes in the deep Fram Strait. The lateral supply of particulate matter was further supported by the constant fluxes of biomarkers such as brassicasterol, alkenones, campesterol, beta-sitosterol, and IP25 at all depths sampled. However, enhanced fluxes of diatoms and appendicularian fecal pellets from the upper waters to the seafloor in the presence of ice during spring indicated the rapid export (15-35 days) of locally-produced large particles that likely contributed most of the food supply to the benthic communities. These results show that lateral supply and downward fluxes are both important processes influencing the transport of particulate matter to the seafloor in the deep eastern Fram Strait, and that particulate matter size dictates the prevailing sinking process.
Resumo:
Rising stable nitrogen isotope ratios (d15N) in dated sediment records of the German Bight/SE North Sea track river-induced coastal eutrophication over the last 2 centuries. Fully exploiting their potential for reconstructions of pristine conditions and quantitative analysis of historical changes in the nitrogen cycle from these sediment records requires knowledge on processes that alter the isotopic signal in non-living organic matter (OM) of sinking particles and sediments. In this study, we analyze the isotopic composition of particulate nitrogen (PN) in the water column during different seasons, in surface sediments, and in sediment cores to assess diagenetic influences on the isotopic composition of OM. Amino acid (AA) compositions of suspended matter, surface sediments, and dated cores at selected sites of the German Bight serve as indicators for quality and degradation state of PN. The d15N of PN in suspended matter had seasonal variances caused by two main nitrate sources (oceanic and river) and different stages of nitrate availability during phytoplankton assimilation. Elevated d15N values (> 20 per mil) in suspended matter near river mouths and the coast coincide with a coastal water mass receiving nitrate with elevated isotope signal (d15N > 10 per mil) derived from anthropogenic input. Particulate nitrogen at offshore sites fed by oceanic nitrate having a d15N between 5 and 6 per mil had low d15N values (< 2 per mil), indicative of an incipient phytoplankton bloom. Surface sediments along an offshore-onshore transect also reflect the gradient of low d15N of nitrate in offshore sites to high values near river mouths, but the range of values is smaller than between the end members listed above and integrates the annual d15N of detritus. Sediment cores from the coastal sector of the gradient show an increasing d15N trend (increase of 2.5 per mil) over the last 150 years. This is not related to any change in AA composition and thus reflects eutrophication. The d15N signals from before AD 1860 represent a good estimation of pre-industrial isotopic compositions with minimal diagenetic overprinting. Rising d13C in step with rising d15N in these cores is best explained by increasing productivity caused by eutrophication.
Resumo:
Lake Towuti is a tectonic basin, surrounded by ultramafic rocks. Lateritic soils form through weathering and deliver abundant iron (oxy)hydroxides but very little sulfate to the lake and its sediment. To characterize the sediment biogeochemistry, we collected cores at three sites with increasing water depth and decreasing bottom water oxygen concentrations. Microbial cell densities were highest at the shallow site - a feature we attribute to the availability of labile organic matter and the higher abundance of electron acceptors due to oxic bottom water conditions. At the two other sites, OM degradation and reduction processes below the oxycline led to partial electron acceptor depletion. Genetic information preserved in the sediment as extracellular DNA provides information on aerobic and anaerobic heterotrophs related to Actinobacteria, Nitrospirae, Chloroflexi and Thermoplasmatales. These taxa apparently played a significant role in the degradation of sinking organic matter. However, extracellular DNA concentrations rapidly decrease with core depth. Despite very low sulfate concentrations, sulfate-reducing bacteria were present and viable in sediments at all three sites, as confirmed by measurement of potential sulfate reduction rates. Microbial community fingerprinting supported the presence of taxa related to Deltaproteobacteria and Firmicutes with demonstrated capacity for iron and sulfate reduction. Concomitantly, sequences of Ruminococcaceae, Clostridiales and Methanomicrobiales indicated potential for fermentative hydrogen and methane production. Such first insights into ferruginous sediments show that microbial populations perform successive metabolisms related to sulfur, iron and methane. In theory, iron reduction could reoxidize reduced sulfur compounds and desorb OM from iron minerals to allow remineralization to methane. Overall, we found that biogeochemical processes in the sediments can be linked to redox differences in the bottom waters of the three sites, like oxidant concentrations and the supply of labile OM. At the scale of the lacustrine record, our geomicrobiological study should provide a means to link the extant subsurface biosphere to past environments.