936 resultados para SUPERCRITICAL-FLUID CHROMATOGRAPHY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensitive, accurate and simple method using HPLC-MS/MS was developed and validated for levodopa quantitation in human plasma. Analysis was achieved on a pursuit® C18 analytical column (5 µm; 150 x 4.6 mm i.d.) using a mobile phase (methanol and water , 90:10, v/v) containing formic acid 0.5% v/v, after extracting the samples using a simple protein plasma precipitation with perchloric acid. The developed method was validated in accordance with ANVISA guidelines and was successfully applied to a bioequivalence study in 60 healthy volunteers demonstrating the feasibility and reliability of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eight bufadienolides were successfully isolated and purified from ChanSu by high-speed counter-current chromatography (HSCCC) combined with preparative HPLC (prep-HPLC). First, a stepwise elution mode of HSCCC with the solvent system composed of petroleum ether - ethyl acetate - methanol - water (4:6:4:6, 4:6:5:5, v/v) was employed and four bufadienolides, two partially purified fractions were obtained from 200 mg of crude extract. The partially purified fractions III and VI were then further separated by prep-HPLC, respectively, and another four bufadienolides were recovered. Their structures were confirmed by ESI-MS and ¹H-NMR spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient method for the rapid separation and purification of polyphenols from artichoke by polyamide column chromatography in combination with high-speed counter-current chromatography (HSCCC) was successfully built. The crude ethanol extracts from dry artichoke were first pre-separated by polyamide column chromatography and divided in two parts as sample 1 and sample 2. Then, the samples were further separated by HSCCC and yielded 7.8 mg of chlorogenic acid (compound I), 24.5 mg of luteolin-7-O-β-D-rutinoside (compound II), 18.4 mg of luteolin-7-O-β-D-glucoside (compound III), and 33.4 mg of cynarin (compound IV) with purity levels of 92.0%, 98.2%, 98.5%, and 98.0%, respectively, as determined by high-performance liquid chromatography (HPLC) method. The chemical structures of these compounds were identified by electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work focused on the development and validation of an RP-HPLC-UV method for quantification of beta-lactam antibiotics in three pharmaceutical samples. Active principles analyzed were amoxicillin and ampicillin, in 3 veterinary drugs. Mobile phase comprised 5 mmol L-1 phosphoric acid solution at pH 2.00, acetonitrile with gradient elution mode and detection wavelength at 220 nm. The method was validated according to the Brazilian National Health Surveillance regulation, where linear range and linearity, selectivity, precision, accuracy and ruggedness were evaluated. Inter day precision and accuracy for pharmaceutical samples 1, 2 and 3 were: 1.43 and 1.43%; 4.71 and 3.74%; 2.72 and 1.72%, respectively, while regression coefficients for analytical curves exceeded 0.99. The method had acceptable merit figure values, indicating reliable quantification. Analyzed samples had active principle concentrations varying from -12 to +21% compared to manufacturer label claims, rendering the medicine unsafe for administration to animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technique of pH-zone-refining counter-current chromatography was successfully applied to preparatively separate three C19-diterpenoid alkaloids from the crude extracts of Aconitum carmichaelii for the first time using a two-phase solvent system of petroleum ether-ethyl acetate-methanol-water (5:5:1:9, v/v/v/v). Mesaconitine (I), hypaconitine (II), and deoxyaconitine (III) were obtained from 2.5 g of the crude alkaloids in a one-step separation; the yields were 4.16%, 16.96%, and 5.05%, respectively. The purities of compounds I, II, and III were 93.0%, 95%, and 96%, respectively, as determined by HPLC. The chemical structures of the three compounds were identified by electrospray ionization mass spectrometry (ESI-MS) and NMR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An effective method for the rapid separation and purification of three stilbenes from the radix of Polygonum cillinerve (Nakai) Ohwl by macroporous resin column chromatography combined with high-speed counter-current chromatography (HSCCC) was successfully established. In the present study, a two-phase solvent system composed of chloroform-n-butanol-methanol-water (4:1:4:2, v/v/v/v) was used for HSCCC separation. A one-step separation in 4 h from 150 mg of crude extract produced 26.3 mg of trans-resveratrol-3-O-glucoside, 42.0 mg of pieceid-2"-O-gallate, and 17.9 mg of trans-resveratrol with purities of 99.1%, 97.8%, and 99.4%, respectively, as determined by high-performance liquid chromatography (HPLC). The chemical structures of these compounds were identified by nuclear magnetic resonance (NMR) spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polychlorinated biphenyls (PCBs) were widely used between 1940 and 1970 as an insulating fluid for transformers and capacitors. However, they are bioaccumulative and potentially carcinogenic and, according to the 2001 Stockholm Convention, must be eliminated by 2025. In Brazil, they have been gradually eliminated but contaminated equipment remains. The Brazilian official standard for PCBs content in oil analysis is the ABNT NBR 13882 and there is also the IEC 61619 International Standard, both based on GC-ECD quantification. This work identified the inefficiency of these analytical methods and highlights potential failures which generated discrepancies on quantification of these contaminants. It was observed that the IEC 61619 is superior to ABNT NBR 13882 in analytical criteria, but has problems with the inefficiency of the adsorbent material used in pretreatments for removal of oxidation products from oil where these adsorbents adsorbed some PCBs molecules, causing errors in quantification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ilex paraguariensis (yerba-mate) is used as a beverage, and its extract requires adequate quality control methods in order to guarantee quality and safe use. Strategies to develop and optimize a chromatographic method to quantify theobromine, caffeine, and chlorogenic acid in I. paraguariensis extracts were evaluated by applying a quality by design (QbD) model and ultra high-performance liquid chromatography (UHPLC). The presence of these three phytochemical markers in the extracts was evaluated using UHPLC-MS and was confirmed by the chromatographic bands in the total ion current traces (m/z of 181.1 [M+H]+, 195.0 [M+H]+, and 353.0 [M−H]−, respectively). The developed method was then transferred to a high-performance liquid chromatography (HPLC) platform, and the three phytochemical markers were used as external standards in the validation of a method for analyses of these compounds in extracts using a diode array detector (DAD). The validated method was applied to quantify the chlorogenic acid, caffeine, and theobromine in the samples. HPLC-DAD chromatographic fingerprinting was also used in a multivariate approach to process the entire data and to separate the I. paraguariensis extracts into two groups. The developed method is very useful for qualifying and quantifying I. paraguariensis extracts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enantiomeric aglycone lignans contained in a mixture were separated from a fraction of the extract of the stems of Alibertia sessilis (Vell.) K. Schum. (Rubiaceae) by preparative high-performance liquid chromatography. An efficient and fast separation can be achieved with methanol-water (30:70, v/v). Their structures were identified as (+)-lyoniresinol 3alpha-O-beta-glucopyranoside and (-)-lyoniresinol 3alpha-O-beta-glucopyranoside, being reported for the first time in Rubiaceae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the work is to study fluid flow behavior through a pinch valve and to estimate the flow coefficient (KV ) at different opening positions of the valve. The flow inside a compressed valve is more complex than in a straight pipe, and it is one of main topics of interest for engineers in process industry. In the present work, we have numerically simulated compressed valve flow at different opening positions. In order to simulate the flow through pinch valve, several models of the elastomeric valve tube (pinch valve tube) at different opening positions were constructed in 2D-axisymmetric and 3D geometries. The numerical simulations were performed with the CFD packages; ANSYS FLUENT and ANSYS CFX by using parallel computing. The distributions of static pressure, velocity and turbulent kinetic energy have been studied at different opening positions of the valve in both 2D-axisymmetric and 3D experiments. The flow coefficient (KV ) values have been measured at different valve openings and are compared between 2D-axisymmetric and 3D simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For decades researchers have been trying to build models that would help understand price performance in financial markets and, therefore, to be able to forecast future prices. However, any econometric approaches have notoriously failed in predicting extreme events in markets. At the end of 20th century, market specialists started to admit that the reasons for economy meltdowns may originate as much in rational actions of traders as in human psychology. The latter forces have been described as trading biases, also known as animal spirits. This study aims at expressing in mathematical form some of the basic trading biases as well as the idea of market momentum and, therefore, reconstructing the dynamics of prices in financial markets. It is proposed through a novel family of models originating in population and fluid dynamics, applied to an electricity spot price time series. The main goal of this work is to investigate via numerical solutions how well theequations succeed in reproducing the real market time series properties, especially those that seemingly contradict standard assumptions of neoclassical economic theory, in particular the Efficient Market Hypothesis. The results show that the proposed model is able to generate price realizations that closely reproduce the behaviour and statistics of the original electricity spot price. That is achieved in all price levels, from small and medium-range variations to price spikes. The latter were generated from price dynamics and market momentum, without superimposing jump processes in the model. In the light of the presented results, it seems that the latest assumptions about human psychology and market momentum ruling market dynamics may be true. Therefore, other commodity markets should be analyzed with this model as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Batch chromatography is a widely used separation technique in a variety of fields meeting difficult separations. Several technologies for improving the performance of chromatography have been studied, including mixed-recycle steady state recycling (MR-SSR) chromatography. Design of MR-SSR has been commonly limited on 100 % purity constraint cases and empirical work. In this study a predictive design method was used to optimize feed pulse size and design a number of experimental MR-SSR separations for a solution of 20 % sulfuric acid and 100 g/L glucose. The design was under target product fraction purities of 98.7 % for H2SO4 and 95 % for glucose. The experiments indicate a maximum of 59 % increase in sulfuric acid productivity and 82 % increase for glucose when compared to corresponding batch separation. Eluent consumption was lowered by approximately 50 % using recycling chromatography. Within this study the target purities and yields set in design were not completely met, and further optimization of the process is deemed necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To verify the predictors of intravasation rate during hysteroscopy.METHODS: Prospective observational study (Canadian Task Force classification II-1). All cases (n=200 women; 22 to 86 years old) were treated in an operating room setting. Considering respective bag overfill to calculate water balance, we tested two multiple linear regression models: one for total intravasation (mL) and the other for absorption rate (mL.min-1). The predictors tested (independent variables) were energy (mono/bipolar), tube patency (with/without tubal ligation), hysterometry (cm), age≤50 years, body surface area (m2), surgical complexity (with/without myomectomy) and duration (min).RESULTS: Mean intravasation was significantly higher when myomectomy was performed (442±616 versus 223±332 mL; p<0.01). In the proposed multiple linear regression models for total intravasation (adjusted R2=0.44; p<0.01), the only significant predictors were myomectomy and duration (p<0.01).In the proposed model for intravasation rate (R2=0.39; p<0.01), only myomectomy and hysterometry were significant predictors (p=0.02 and p<0.01, respectively).CONCLUSIONS: Not only myomectomy but also hysterometry were significant predictors of intravasation rate during operative hysteroscopy.