931 resultados para SOL-GEL PROCESS
Resumo:
The feasibility of the photobleaching of a textile azo dye, reactive orange 16 (C.I. 17757), in aqueous solution using titanium dioxide thin-film electrodes prepared by the sol-gel method was investigated. The best conditions for maximum photoelectrocatalytic degradation were found to be pH > 10 for Na2SO4 medium and pH < 6 for NaCl. In both situations, an applied potential of +1.0 V and low dye concentration are recommended, when 100% of color removal is obtained after 20 min of photoelectrocatalysis. The effects of side reaction pathway on the degradation rate of dye in sulfate and chloride medium were presented and the best performance are optimized to situations closed to that verified in the textile effluent. The influence of variables as applied potential, pH, supporting electrolyte and dye concentration on the kinetics of photoelectrochemical degradation also were investigated. Oxalic acid is identified by HPLC and UV-Vis spectrophotometric methods as the main degradation product generated after 180 min of photoelectrocatalysis of 4 x 10(-5) mol l(-1) dye in sodium sulphate pH 12 and NaCl pH 4.0 and a maximum reduction of 56 and 62% TOC was obtained, respectively. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this work is to obtain micrometer sized spherical particles of silica and silica-chromium from sodium silicate. Spherical particles were prepared by sol-gel method from hydrolysis to polycondensation of aqueous sodium silicate in alcohol medium. Chromium was added to the system for some samples. Compositions and morphologies were achieved by changing the precipitation agent. X-ray diffractometry, electrophoretic mobility, infrared spectroscopy and scanning electron microscopies were carried out on these particles to identify phases, determine particle mobility, morphology, particle sizes, shapes and order at short distance. Non-crystalline silica particles with spherical shapes and micrometric size were obtained. The surface potentials of the silica particles differed from that of the silica-chromium particles. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work we report the effects of incorporation of variable amounts (0.5-25%w/w) of montmorillonite in poly(oxyethylene) based materials in order to decrease the polymer crystallinity. Two different classes of materials were studied: silica-poly(oxyethylene)-montmorillonite hybrids prepared by the sol-gel route and poly(oxyethylene)-montmorillonite nanocomposites prepared by mixing the dry clay or the clay aqueous suspension into the melt poly(oxyethylene). The effects of monternorillonite loading on the poly(oxyethylene) crystallization control and on the nanostructural features were investigated by X-ray powder diffraction, small-angle X-ray scattering and differential scanning calorimetry. Experimental results show that free montmorillonite layers coexist with open aggregates and tactoids in the poly(oxyethylene)-montmorillonite nanocomposites, with different features depending on the filler proportion and preparation route. The intercalation of polymer chains in montmorillonite galleries markedly hinders the crystallization of the poly(oxyethylene) matrix. For hybrids materials the silica phase favors the exfoliation of montmorillonite tactoids, so that samples are predominantly constituted by dispersed platelets. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Silica-based sol-gel waveguides activated by Er3+ ions are attractive materials for integrated optic devices. 70SiO(2)-30HfO(2) planar waveguides, doped with Er3+ concentrations ranging from 0.01 to 4 mol%, were prepared by sol-get route. The films were deposited on v-SiO2 and silica-on-silicon substrates, using dip-coating technique. The waveguides show a homogeneous surface morphology, high densification degree and uniform refractive index across the thickness. Emission in the C-telecommunication band was observed at room temperature for ill the samples upon excitation at 980 nm. The shape is found to be almost independent on erbium content, with a FWHM between 44 and 48 nm. The I-4(13/2) level decay curves presented a single-exponential profile, with a lifetime ranging between 1.1 and 6.7 ms, depending on the erbium concentration. The waveguide deposited on silica-on-silicon substrate supports one single propagation mode at 1.5 mum with a confinement coefficient of 0.85, and a losses of about 0.8 dB/cm at 632.8 nm. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Tin oxide nanoparticles prepared by an aqueous sol-gel method were deposited by dip-coating on fluorozirconate glass, ZBLAN (53%ZrF4-20%BaF2-4%LaF3-3%AlF3-20%NaF) to improve its resistance against wet corrosion. The aqueous leaching of uncoated and SnO2-coated fluorozirconate glass was studied by X-ray photoemission spectroscopy (XPS) and it was shown that even an ultra thin tin dioxide film provides good protection of the glass surface against the bulk propagation of the hydrolytic attack.
Resumo:
The structure and the ionic conduction properties of siloxane-poly(oxypropylene) (PPO) hybrids doped with different potassium salts (KCF3SO3, KI, KClO4 and KNO2) are reported for two polymer molecular weights (300 and 4000 g/mol), labelled PPO300 and PPO4000, respectively. The doping concentration, related to the concentration of the ether type oxygen of the PPO chain, is the same whatever the salt and verifies [O]/[K] = 20. Ionic room temperature conductivity shows the highest value for the KCF3SO3 doped PPO4000 hybrid (4 x 10(-7)Omega(-1).cm(-1)). The structure of these hybrids was investigated by X-ray powder diffraction (XRPD) and X-ray absorption spectroscopy (EXAFS and XANES) at the potassium K-edge (3607 eV). XRPD results show that the hybrid matrix is always amorphous and the formation of secondary potassium phases is observed for all the samples, except for the KCF3SO3 doped PPO4000 hybrid. EXAFS results evidence a good correlation between the ionic conductivity and the presence of oxygen atoms as first neighbours around potassium.
Resumo:
A simplified dissolution and reaction modeling was employed to study the hydrolysis of heterogeneous tetraethoxysilane (TEOS)-water-HCl mixtures under ultrasound stimulation. The nominal pH was changed from 0.8 to 2.0. The acid specific hydrolysis rate constant was determined as k = 6.1 mol(-1) 1 min(-1) [H+](-1) at 39 degreesC, in good agreement with the literature. Along the heterogeneous step of the reaction, the ultrasound maintains an additional quantity of water under a virtual state of dissolution besides the water dissolved due to the homogenizing effect of the alcohol produced in the reaction. The forced virtually dissolved water is probably represented by water at the TEOS-water interface during the heterogeneous step of the reaction. The mean radius of the heterogeneity represented by water dispersed in TEOS phase, while hydrolysis has not started yet, was evaluated as about 290 A. The HCl concentration accordingly increases the hydrolysis rate constant but its fundamental role on the immiscibility gap of the TEOS-water-ethanol system has not been unequivocally established. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
This paper reports results from electrochemical evaluations of electrodes used as cathodes for a hydrogen evolution reaction and anodes in Ni-MH batteries that had been surface-modified by micro-encapsulation, co-deposition and sol-gel methods. The surface modifications produced actual improvements in the corresponding electrochemical reactions by enhancing the performance and/or the mechanical stability of the electrode material. (c) 2005 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Er-doped SnO2 thin films, obtained by sol-gel-dip-coating technique, were submitted to excitation with the 4th harmonic of a Nd:YAG laser (266 nm), at low temperature, and a conductivity decay is observed when the illumination is removed. This decay is modeled by considering a thermally activated cross section of an Er-related trapping center. Besides, grain boundary scattering is considered as dominant for electronic mobility. X-ray diffraction data show a characteristic profile of nanoscopic crystallite material (grain average size approximate to 5 nm) in agreement with this model. Temperature dependent and concentration dependent decays are measured and the capture barrier is evaluated from the model, yielding 100 meV for SnO2:0.1% Er and 148 meV for SnO2:4% Er.
Resumo:
Zirconia-polymethylmetacrylate hybrids prepared by a sol-gel method were deposited by dip-coating on stainless steel to improve the resistance against wet corrosion. The effect of the concentration of polymethylmetacrylate and the number of coating applications on the microstructure and corrosion performance of coated samples was investigated. The microstructural properties of samples was analyzed by scanning electron and atomic force microscopy, adhesion tests and profilemeter measurements. The electrochemical corrosion was evaluated through potentiodynamic polarization curves at room temperature. Results show that the sample prepared with 17 vol.% of polymethylmethacrylate has a maximum corrosion resistance, smaller roughness, are hermetic and adherent to the substrate. This film increases the life time of the stainless steel by a factor 30. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The crystallographic and magnetic structure of sintered, polycrystalline samples of zinc-antimony spinel, Zn7-xNixSb2O12, have been investigated. The samples were prepared by the modified polymeric precursors method. The magnetic contributions of the Ni2+ ions distributed in three non-equivalent crystallographic sites were investigated, revealing the occurrence of different magnetic regimes. A hysteresis response in the magnetic susceptibility indicates a spin-glasslike behavior at low temperatures. (C) 2000 Elsevier B.V. S.A. All rights reserved.
Resumo:
A structure modeling of two families of sol-gel derived Eu3+-doped organic/inorganic hybrids based on the results of small-angle X-ray scattering experiments is reported. The materials are composed of poly(oxyethylene) chains grafted at one or both ends to siloxane groups and are called mono- and di-urethanesils, respectively. A theoretical function corresponding to a two-level hierarchical structure model fits well the experimental Scattering curves. The first level corresponds to small siloxane clusters embedded in a polymeric matrix. The secondary level is associated to the existence of siloxane cluster rich domains surrounded by a cluster-depleted polymeric matrix. Results show that increasing europium doping favors the growth of the secondary domains. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Er3+ doped SnO2 xerogels have been obtained from aqueous colloidal suspensions. Emission and excitation spectra were obtained and allowed the identification of two main families of sites for Er3+. In the first one Er3+ substitutes for Sn4+ in the SnO2 cassiterite structure. In the second Er3+ are found adsorbed at the SnO2 particle surface. For the first family of sites the technological important infrared Er3+ emission about 1.5 mum is efficiently excited through absorption at the SnO2 conduction band at 3.8 eV. on the other hand the emission due to adsorbed ions appears inhomogeneously broadened by the statistical distribution of sites available for Er3+ ions at the surface of the particles. Moreover it is not excited by the host. The emission of this second family of sites could be also excited by an energy transfer mechanism involving Yb3+ ions also adsorbed a posteriori at particles surface. Results are compared with spectra obtained for Eu3+ doped samples. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Aluminium Hydroxides were precipitated from Aluminium Nitrate and Ammonium Hydroxide, at the temperatures 64 degrees C (hot) and 25 degrees C (cold), under the pH conditions 5, 7 and 9. The samples were characterized by X-Ray Diffraction (XRD) and Differential Thermal Analysis (DTA). The hydroxide precipitated at pH 9 and 64 degrees C is built up by pseudoboehmite and a minor share of others apparently amorphous hydroxides. The crystallinity of the hot yielded pseudoboehmite diminishes with the pH. The crystallite size was evaluated as about 40 Angstrom for the best crystallized sample. The cold precipitated product is apparently composed by amorphous or very poorly crystallized hydroxides. Upon heating, the cold precipitated hydroxides, and the low pH and hot precipitated hydroxide, release their structural water before the occurrence, about 430 degrees C, of the transition of the pseudoboehmite to gamma-alumina, and exhibit a shifting (towards low temperature side) and a broadening in the peak of the transition to alpha-alumina, which occurs at 1200 degrees C in the pseudoboehmite pattern. The yielded pseudo-boehmite peptized by HNO3, addition and gelified by evaporation in a critical concentration approximately 0.17 gcm(-3).
Resumo:
Monodisperse spheres of silica and latex were obtained by a surfactant free styrene polimerization and the Stober method respectively. Controlling settling either by centrifugation or by dip-coating colloidal crystals could be obtained. Silica inverse opals were prepared by using the latex colloidal crystals as templates and TEOS/ethanol solution. Eu3+ containing silica spheres were obtained dispersing silica spheres in Eu(NO3)(3) isopropanol solutions. Emission spectra suggest the formation of an amorphous Eu3+ containing phase well adhered at the spheres surface. The utilization of solutions of trifluoroacetates salts of Pb2+ and Eu3+ was observed to destroy the silica spherical pattern when samples are treated at 1000degreesC. In that case nanocrystals of PbF2 and amorphous silica were obtained after heat treatment.