899 resultados para SIMULTANEOUS LOCALIZATION
Resumo:
Ceria (CeO2) and ceria-based composite materials, especially Ce1-xZrxO2 solid solutions, possess a wide range of applications in many important catalytic processes, such as three-way catalysts, owing to their excellent oxygen storage capacity (OSC) through the oxygen vacancy formation and refilling. Much of this activity has focused on the understanding of the electronic and structural properties of defective CeO2 with and without doping, and comprehending the determining factor for oxygen vacancy formation and the rule to tune the formation energy by doping has constituted a central issue in material chemistry related to ceria. However, the calculation on electronic structures and the corresponding relaxation patterns in defective CeO2-x oxides remains at present a challenge in the DFT framework. A pragmatic approach based on density functional theory with the inclusion of on-site Coulomb correction, i.e. the so-called DFT + U technique, has been extensively applied in the majority of recent theoretical investigations. Firstly, we review briefly the latest electronic structure calculations of defective CeO2(111), focusing on the phenomenon of multiple configurations of the localized 4f electrons, as well as the discussions of its formation mechanism and the catalytic role in activating the O-2 molecule. Secondly, aiming at shedding light on the doping effect on tuning the oxygen vacancy formation in ceria-based solid solutions, we summarize the recent theoretical results of Ce1-xZrxO2 solid solutions in terms of the effect of dopant concentrations and crystal phases. A general model on O vacancy formation is also discussed; it consists of electrostatic and structural relaxation terms, and the vital role of the later is emphasized. Particularly, we discuss the crucial role of the localized structural relaxation patterns in determining the superb oxygen storage capacity in kappa-phase Ce1-xZr1-xO2. Thirdly, we briefly discuss some interesting findings for the oxygen vacancy formation in pure ceria nanoparticles (NPs) uncovered by DFT calculations and compare those with the bulk or extended surfaces of ceria as well as different particle sizes, emphasizing the role of the electrostatic field in determining the O vacancy formation.
Resumo:
We identified a synthetic lethality between PLK1 silencing and the expression of an oncogenic Epidermal Growth Factor Receptor, EGFRvIII. PLK1 promoted homologous recombination (HR), mitigating EGFRvIII induced oncogenic stress resulting from DNA damage accumulation. Accordingly, PLK1 inhibition enhanced the cytotoxic effects of the DNA damaging agent, temozolomide (TMZ). This effect was significantly more pronounced in an Ink4a/Arf(-/-) EGFRvIII glioblastoma model relative to an Ink4a/Arf(-/-) PDGF-β model. The tumoricidal and TMZ-sensitizing effects of BI2536 were uniformly observed across Ink4a/Arf(-/-) EGFRvIII glioblastoma clones that acquired independent resistance mechanisms to EGFR inhibitors, suggesting these resistant clones retain oncogenic stress that required PLK1 compensation. Although BI2536 significantly augmented the anti-neoplastic effect of EGFR inhibitors in the Ink4a/Arf(-/-) EGFRvIII model, durable response was not achieved until TMZ was added. Our results suggest that optimal therapeutic effect against glioblastomas requires a "multi-orthogonal" combination tailored to the molecular physiology associated with the target cancer genome.
Resumo:
Indoor personnel localization research has generated a range of potential techniques and algorithms. However, these typically do not account for the influence of the user's body upon the radio channel. In this paper an active RFID based patient tracking system is demonstrated and three localization algorithms are used to estimate the location of a user within a modern office building. It is shown that disregarding body effects reduces the accuracy of the algorithms' location estimates and that body shadowing effects create a systematic position error that estimates the user's location as closer to the RFID reader that the active tag has line of sight to.
Resumo:
Bioresorbable polymers have been widely investigated as materials exhibiting significant potential for successful application in the medical fields of bone fixation devices and drug delivery. Further to the ability to control degradation, surface engineering of polymers has been highlighted as a key method central to their development. Previous work has demonstrated the ability of electron beam (e-beam) technology to control the degradation profiles and bioresorption of a number of commercially relevant bioresorbable polymers (poly-l-lactic acid (PLLA), L-lactide/ DL-lactide co-polymer (PLDL) and poly(lactic-co-glycolic acid) (PLGA). This work investigates the further potential of e-beam technology to impart added biofunctionality through the manipulation of polymer (PLLA) surface properties. A Dynamatron Continuous DC e-beam unit (Synergy Health, UK), with beam energies of 0.5, 0.75, and 1.5 MeV, was used for the irradiation of PLLA samples with delivered surface doses of 150 or 500 kGy at each energy level. The chosen conditions reflect the need to achieve a specific surface modification for the control of surface degradation as demonstrated in previous work. Surface characterization was then performed using contact angle analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy.
Results demonstrated a significant increase in surface wettability post e-beam treatment. In correlation with this, XPS data showed the introduction of oxygen-containing functional groups to the surface of PLLA. Raman spectroscopy indicated chain scission in the near surface region of PLLA. E-beam irradiation did not seem to affect the surface roughness of PLLA as a direct consequence of the treatment. In conclusion electron beam surface modification has been found to modify both the surface-to-bulk bioresorption profile and the surface hydrophilicity. Both could provide benefits in relation to the performance of implantable medical devices.
Resumo:
In this work, olive stone (OS) was utilized to investigate its capacity as biosorbent for methylene blue (MB) and Cr(III), which are usually present in textile industry effluents. Equilibrium and kinetic experiments were performed in batch experiments. The biosorption process followed pseudo-second-order kinetics. The equilibrium data were fitted with several models, but Langmuir and Sips models best reproduced the experimental results. Maximum biosorption capacities were 3.296 mg/g (0.0116 mmol/g) and 4.990 mg/g (0.0960 mmol/g) for MB and Cr(III), respectively. Several operation variables, such as
biosorbent mass, flow rate, and initial concentration on the removal of dye and metal, were evaluated in column system. The removal efficiency improved as OS mass increased and decreased when flow rate and initial concentration increased. Also, MB uptake was substantially decreased by increasing the initial concentration of Cr(III), ranging from 6.09 to 2.75 mg/g. These results show that the presence of Cr(III) significantly modifies the biosorption capacity of MB by the OS. These results suggest that OS is a potential low-cost food industry waste for textile industry wastewater treatment.
Resumo:
Members of a large pedigree of Irish origin presenting with early onset Type I autosomal dominant retinitis pigmentosa (ADRP) have been typed for D3S47 (C17), a polymorphic marker from the long arm of chromosome 3. Significant, tight linkage of ADRP to D3S47, with a lod score of 14.7 maximizing at 0.00 recombination, has been obtained, hence localizing the ADRP gene (RP1) segregating in this pedigree to 3q.
Resumo:
The semiconductor photocatalysed (SPC) oxidation of toluene is performed inside an NMR spectrometer and the reaction monitored simultaneously in-situ, using a fibre optic probe/diffuser to provide the UV light to activate the titania photocatalyst coating on the inside of the NMR tube. Such a system has great potential for the simple rapid screening of a wide range of SPC mediated organic reactions.
Resumo:
PURPOSE: LYRIC/AEG-1 has been reported to influence breast cancer survival and metastases, and its altered expression has been found in a number of cancers. The cellular function of LYRIC/AEG-1 has previously been related to its subcellular distribution in cell lines. LYRIC/AEG-1 contains three uncharacterized nuclear localization signals (NLS), which may regulate its distribution and, ultimately, function in cells.
EXPERIMENTAL DESIGN: Immunohistochemistry of a human prostate tissue microarray composed of 179 prostate cancer and 24 benign samples was used to assess LYRIC/AEG-1 distribution. Green fluorescent protein-NLS fusion proteins and deletion constructs were used to show the ability of LYRIC/AEG-1 NLS to target green fluorescent protein from the cytoplasm to the nucleus. Immunoprecipitation and Western blotting were used to show posttranslational modification of LYRIC/AEG-1 NLS regions.
RESULTS: Using a prostate tissue microarray, significant changes in the distribution of LYRIC/AEG-1 were observed in prostate cancer as an increased cytoplasmic distribution in tumors compared with benign tissue. These differences were most marked in high grade and aggressive prostate cancers and were associated with decreased survival. The COOH-terminal extended NLS-3 (amino acids 546-582) is the predominant regulator of nuclear localization, whereas extended NLS-1 (amino acids 78-130) regulates its nucleolar localization. Within the extended NLS-2 region (amino acids 415-486), LYRIC/AEG-1 can be modified by ubiquitin almost exclusively within the cytoplasm.
CONCLUSIONS: Changes in LYRIC/AEG-1 subcellular distribution can predict Gleason grade and survival. Two lysine-rich regions (NLS-1 and NLS-3) can target LYRIC/AEG-1 to subcellular compartments whereas NLS-2 is modified by ubiquitin in the cytoplasm.
Resumo:
BACKGROUND: Wnt signaling is thought to be important in prostate cancer, in part because proteins such as beta-catenin can also affect androgen receptor signaling. beta-Catenin forms a cell adhesion complex with E-cadherin raising the possibility that loss of expression or a change in beta-catenin distribution in the cell could also alter downstream signaling, decreased inter-cellular adhesion and the promotion of metastasis. A number of studies have reported the altered expression and/or localization of beta-catenin as a biomarker in prostate cancer.
METHODS: Tissue microarrays comprised of BPH and low, moderate and high-grade prostate cancer (n=77) were assessed for beta-catenin expression and distribution using immunohistochemistry. Staining was also performed on a tissue microarray containing tissue from patients before and after hormone manipulation. The effects of fixation and different antibodies was assessed on fixed LNCaP cell pellets and small prostate tissue microarrays.
RESULTS: We have observed increased beta-catenin expression in only high Gleason score (>7) prostate cancer. A nuclear re-distribution of beta-catenin has previously been reported. We noted nuclear beta-catenin in benign prostatic hyperplasia and a gradual loss in nuclear distribution with increasing Gleason grade. We found no evidence for an alteration in beta-catenin expression or re-distribution with hormone ablation. Altered fixation, antibodies and antibody concentration did affect the intensity and specificity of staining.
CONCLUSIONS: A loss of nuclear beta-catenin is the most consistent feature in prostate cancer rather than absolute levels of expression. We also suggest that variation in immunohistochemical protocols may explain variations in the reported literature.
Resumo:
Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is a prominent substrate for activated tyrosine kinase receptors that has been proposed to play a role in endosomal membrane trafficking. The protein contains a FYVE domain, which specifically binds to the lipid phosphatidylinositol (PI) 3-phosphate (PI 3-P). We show that this interaction is required both for correct localization of the protein to endosomes that only partially coincides with early endosomal autoantigen 1 and for efficient tyrosine phosphorylation of the protein in response to epidermal growth factor stimulation. Treatment with wortmannin reveals that Hrs phosphorylation also requires PI 3-kinase activity, which is necessary to generate the PI 3-P required for localization. We have used both hypertonic media and expression of a dominant-negative form of dynamin (K44A) to inhibit endocytosis; under which conditions, receptor stimulation fails to elicit phosphorylation of Hrs. Our results provide a clear example of the coupling of a signal transduction pathway to endocytosis, from which we propose that activated receptor (or associated factor) must be delivered to the appropriate endocytic compartment in order for Hrs phosphorylation to occur.
Resumo:
Like humans, mice exhibit polymorphism in the N-acetylation of aromatic amines, many of which are toxic and/or carcinogenic. Mice have three N-acetyltransferase (Nat) genes, Nat1, Nat2 and Nat3, and Nat2 is known to be polymorphic. There is a dramatic difference in the acetylation of NAT2 substrates by blood from fast (C57BL/6J) compared with slow acetylator (A/J) mice. However, the acetylation of these substrates by liver cytosols from the two strains is very similar. In order to determine whether the expression of the NAT2 protein corresponded with the activities measured, a polyclonal antipeptide antisera was raised against the C-terminal decapeptide of NAT2 and characterized using recombinant murine NAT2 antigen. Enzyme-linked immunosorbent assays (ELISAs) demonstrated that the anti-NAT2 antiserum bound in a concentration-dependent fashion to recombinant NAT2. Immunochemical analysis of mouse liver cytosols from C57BL/6J or A/J livers indicated that the level of NAT2 protein expressed in the two strains was similar. Immunohistochemical staining of C57BL/6J liver with anti-NAT2 antiserum showed that NAT2 was expressed in hepatocytes throughout the liver although the intensity of staining in the perivenous (centrilobular) region was higher than that in the periportal region. NAT2 was also detected in epithelial cells in the lung, kidney, bladder, small intestine and skin as well as in erythrocytes and lymphocytes in the spleen and hair follicles and sebaceous glands in the skin. Characterization of the distribution of NAT2 will be of value in elucidating the role of polymorphic N-acetylation in protecting the organism from environmental insults as well as in endogenous metabolism.
Resumo:
Photocatalytic conversion of cellulose to sugars and carbon dioxide with simultaneous production of hydrogen assisted by cellulose decomposition under UV or solar light irradiation was achieved upon immobilization of cellulose onto a TiO2 photocatalyst. This approach enables production of hydrogen from water without using valuable sacrificial agents, and provides the possibility for recovering sugars as liquid fuels.
Resumo:
We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" with discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.
Resumo:
Channel randomness can be exploited to generate secret keys. However, to ensure secrecy, it is necessary that the channel response of any eavesdropping party remain sufficiently de-correlated with that of the legitimate users'. In this paper, we investigate whether such de-correlation occurs for a body area network (BAN) operating in an indoor environment at 2.45 GHz. The hypothetical BAN configuration consisted of two legitimate transceivers, one situated on the user's left wrist and the other on the user's waist. The eavesdroppers were positioned in either a co-located or distributed manner in the area surrounding the BAN user. Using the simultaneous channel response measured at the legitimate BAN nodes and the eavesdropper positions for stationary and mobile scenarios, we analyze the localized correlation coefficient. This allows us to determine if it is possible to generate secret keys in the presence of multiple eavesdroppers in an indoor environment. Our experimental results show that although channel reciprocity was observed for both the stationary and the mobile scenarios, a higher de-correlation between the legitimate users' channels was observed for the stationary case. This indicates that mobile scenarios are better suited for secret key generation.